(* Programmed by Jedidiah Barber *) (* Licensed under the Sunset License v1.0 *) module type Algebra = sig type t val zero : t val one : t val add : t -> t -> t val sub : t -> t -> t val mul : t -> t -> t val div : t -> t -> t val to_string : t -> string end module type S = sig type element type wall val empty : wall val create : dimx:int -> dimy:int -> init:element array -> wall val x_length : wall -> int val y_length : wall -> int val has_value : wall -> x:int -> y:int -> bool val get : wall -> x:int -> y:int -> element val get_opt : wall -> x:int -> y:int -> element option val last_nonzero_row : wall -> int val to_string : wall -> string val print : wall -> unit val output : Stdlib.out_channel -> wall -> unit val pp_print : Stdlib.Format.formatter -> wall -> unit end let (let*?) = Option.bind module Make (A : Algebra) = struct type element = A.t type wall = element option array array let x_length wall = Array.length wall let y_length wall = Array.length wall.(0) let has_value wall ~x ~y = if x >= 0 && x < x_length wall && y >= 0 && y < y_length wall then match wall.(x).(y) with None -> false | Some _ -> true else false let get_opt wall ~x ~y = if x >= 0 && x < x_length wall && y >= 0 && y < y_length wall then wall.(x).(y) else None let next_nonzero_up wall ~x ~y = let rec walker y1 = let*? v = get_opt wall ~x ~y:y1 in if v <> A.zero then Some y1 else walker (y1-1) in walker y let next_nonzero_left wall ~x ~y = let rec walker x1 = let*? v = get_opt wall ~x:x1 ~y in if v <> A.zero then Some x1 else walker (x1-1) in walker x let next_nonzero_right wall ~x ~y = let rec walker x1 = let*? v = get_opt wall ~x:x1 ~y in if v <> A.zero then Some x1 else walker (x1+1) in walker x let next_valid_left wall ~x ~y = let rec walker x1 = if x1 < 0 then None else if Option.is_some (get_opt wall ~x:x1 ~y) then Some x1 else walker (x1-1) in walker x let safe_div a b = if b = A.zero then None else Some (A.div a b) let multi_mul items = let f a b = A.mul a b in List.fold_left f A.one items let square a = A.mul a a let rec power ~base ~num ~denom ~times = if times <= 0 then Some base else let*? new_base = safe_div (A.mul base num) denom in power ~base:new_base ~num ~denom ~times:(times-1) (* red x red + green x green = blue squared *) (* target to calculate is red on the bottom of the cross *) (* current cell x two up + one diag up left x one diag up right = one up squared *) let cross_rule wall ~x ~y = let*? green_left = get_opt wall ~x:(x-1) ~y:(y-1) in let*? green_right = get_opt wall ~x:(x+1) ~y:(y-1) in let*? blue = get_opt wall ~x ~y:(y-1) in let*? red_top = get_opt wall ~x ~y:(y-2) in safe_div (A.sub (square blue) (A.mul green_left green_right)) red_top (* outer yellow x inner yellow squared + outer blue x inner blue squared *) (* equals outer grey x inner grey squared + outer red x inner red squared *) (* inner yellow is up, outer yellow is down *) (* inner blue is down, outer blue is up *) (* inner grey is left, outer grey is right *) (* inner red is right, outer red is left *) (* target to calculate is outer yellow *) let long_cross_rule wall ~x ~y = let*? outer_red = get_opt wall ~x:(x-2) ~y:(y-2) in let*? inner_red = get_opt wall ~x:(x+1) ~y:(y-2) in let*? red_product = Some (A.mul outer_red (square inner_red)) in let*? outer_grey = get_opt wall ~x:(x+2) ~y:(y-2) in let*? inner_grey = get_opt wall ~x:(x-1) ~y:(y-2) in let*? grey_product = Some (A.mul outer_grey (square inner_grey)) in let*? grey_red_sum = Some (A.add grey_product red_product) in let*? outer_blue = if y - 4 = -1 then Some A.zero else get_opt wall ~x ~y:(y-4) in let*? inner_blue = get_opt wall ~x ~y:(y-1) in let*? blue_product = Some (A.mul outer_blue (square inner_blue)) in let*? greyred_blue_diff = Some (A.sub grey_red_sum blue_product) in let*? inner_yellow = get_opt wall ~x ~y:(y-3) in safe_div greyred_blue_diff (square inner_yellow) (* All blocks of zeros in the wall come in squares. *) let zero_window wall ~x ~y = let*? top = next_nonzero_up wall ~x ~y:(y-1) in let*? left = next_nonzero_left wall ~x ~y:(top+1) in let*? right = next_nonzero_right wall ~x ~y:(top+1) in if y - 1 > top && right - left > 0 && right - left + 1 > y - 1 - top then Some A.zero else None (* denote ratio of top sequence from left to right as a/b *) (* denote ratio of bottom sequence from right to left as c/d *) (* denote ratio of left sequence from top to bottom as e/f *) (* denote ratio of right sequence from bottom to top as g/h *) (* denote rhs as s *) (* s is 1 when even sized window and -1 when odd sized window *) (* goal is to calculate c/d *) (* then *) (* ((a/b)(c/d))/((e/f)(g/h)) = s *) (* (a/b)(c/d) = s(e/f)(g/h) *) (* (a/b)(c/d) = (seg)/(fh) *) (* c/d = ((seg)/(fh))(b/a) *) (* c/d = (begs)/(afh) *) (* and since that ratio is going from right to left, invert to go left to right *) (* thus to transform bottom left corner number into next number... *) (* multiply by afh then divide by begs *) let horseshoe_rule wall ~x ~y = let*? top = next_nonzero_up wall ~x ~y:(y-1) in let*? left = next_nonzero_left wall ~x ~y:(top+1) in let*? right = next_nonzero_right wall ~x ~y:(top+1) in let*? _ = if y - top <> right - left || right - left <= 2 then None else Some 1 in let*? a = get_opt wall ~x:(left+1) ~y:top in let*? b = get_opt wall ~x:left ~y:top in let*? e = get_opt wall ~x:left ~y:(top+1) in let*? f = get_opt wall ~x:left ~y:top in let*? g = get_opt wall ~x:right ~y:top in let*? h = get_opt wall ~x:right ~y:(top+1) in let*? s = if (right - left - 1) mod 2 = 0 then Some A.one else Some (A.sub A.zero A.one) in let*? prev = next_valid_left wall ~x ~y in power ~base:(Option.get wall.(prev).(y)) ~num:(A.mul (A.mul a f) h) ~denom:(A.mul (A.mul (A.mul b e) g) s) ~times:(x - prev) (* denote ratio of top sequence from left to right as a/b *) (* denote ratio of bottom sequence from right to left as c/d *) (* denote ratio of left sequence from top to bottom as e/f *) (* denote ratio of right sequence from bottom to top as g/h *) (* denote sign of grey/red terms as s *) (* goal is to calculate outer yellow *) (* and also to put off division until the very end to ensure integer intermediate results *) (* then *) (* (e/f)(o_bl/i_bl) + s(a/b)(o_gr/i_gr) = (g/h)(o_ye/i_ye) + s(c/d)(o_re/i_re) *) (* (e/f)(o_bl/i_bl) + s(a/b)(o_gr/i_gr) - s(c/d)(o_re/i_re) = (g/h)(o_ye/i_ye) *) (* i_ye((e/f)(o_bl/i_bl) + s(a/b)(o_gr/i_gr) - s(c/d)(o_re/i_re)) = (g/h)o_ye *) (* o_ye = i_ye(h/g)((e/f)(o_bl/i_bl) + s(a/b)(o_gr/i_gr) - s(c/d)(o_re/i_re)) *) (* o_ye = i_ye(h/g)((e*o_bl)/(f*i_bl) + s(a*o_gr)/(b*i_gr) - s(c*o_re)/(d*i_re)) *) (* o_ye = h*i_ye*(e*o_bl*b*i_gr*d*i_re + s*a*o_gr*f*i_bl*d*i_re - s*c*o_re*f*i_bl*b*i_gr) / *) (* (g*f*i_bl*b*i_gr*d*i_re) *) let broken_cross_rule wall ~x ~y = let*? top = next_nonzero_up wall ~x ~y:(y-2) in let*? left = next_nonzero_left wall ~x ~y:(top+1) in let*? right = next_nonzero_right wall ~x ~y:(top+1) in let*? bottom = Some (y - 1) in let*? _ = if bottom - top <> right - left || right - left <= 2 then None else Some 1 in let*? a = get_opt wall ~x:(left+1) ~y:top in let*? b = get_opt wall ~x:left ~y:top in let*? c = get_opt wall ~x:left ~y:bottom in let*? d = get_opt wall ~x:(left+1) ~y:bottom in let*? e = get_opt wall ~x:left ~y:(top+1) in let*? f = get_opt wall ~x:left ~y:top in let*? g = get_opt wall ~x:right ~y:top in let*? h = get_opt wall ~x:right ~y:(top+1) in let*? s = if (right - x) mod 2 = 0 then Some A.one else Some (A.sub A.zero A.one) in let*? inner_yellow = get_opt wall ~x ~y:bottom in let*? inner_blue = get_opt wall ~x:(right-x+left) ~y:top in let*? inner_red = get_opt wall ~x:right ~y:(bottom-right-x) in let*? inner_grey = get_opt wall ~x:left ~y:(right-x+top) in let*? outer_blue = get_opt wall ~x:(right-x+left) ~y:(top-1) in let*? outer_red = get_opt wall ~x:(right+1) ~y:(bottom-right-x) in let*? outer_grey = get_opt wall ~x:(left-1) ~y:(right-x+top) in let*? term_1 = Some (multi_mul [ e; outer_blue; b; inner_grey; d; inner_red]) in let*? term_2 = Some (multi_mul [s; a; outer_grey; f; inner_blue; d; inner_red]) in let*? term_3 = Some (multi_mul [s; c; outer_red; f; inner_blue; b; inner_grey]) in let*? term_sum = Some (A.sub (A.add term_1 term_2) term_3) in let*? numerator = Some (multi_mul [h; inner_yellow; term_sum]) in let*? denominator = Some (multi_mul [g; f; inner_blue; b; inner_grey; d; inner_red]) in safe_div numerator denominator let rec attempt_order wall ~x ~y funcs = if funcs = [] then None else let r = (List.hd funcs) wall ~x ~y in if Option.is_some r then r else attempt_order wall ~x ~y (List.tl funcs) let create ~dimx ~dimy ~init = let result = Array.make_matrix dimx dimy None in for i = 0 to dimx - 1 do result.(i).(0) <- Some A.one done; for i = 0 to min (dimx - 1) ((Array.length init) - 1) do result.(i).(1) <- Some init.(i) done; try for j = 2 to dimy - 1 do let do_exit = ref true in for i = 0 to dimx - 1 do let v = attempt_order result ~x:i ~y:j [cross_rule; long_cross_rule; zero_window; horseshoe_rule; broken_cross_rule] in result.(i).(j) <- v; if Option.is_some v && Option.get v <> A.zero then do_exit := false done; if !do_exit then raise Exit done; result with Exit -> result (* The empty wall isn't truly empty because every wall has *) (* a row of ones at the very top, regardless of the input sequence. *) let empty = Array.make_matrix 1 1 (Some A.one) let get wall ~x ~y = if x >= 0 && x < x_length wall && y >= 0 && y < y_length wall then match wall.(x).(y) with None -> raise Not_found | Some v -> v else raise Not_found let last_nonzero_row wall = let rec checker x y = if wall.(x).(y) <> Some A.zero && wall.(x).(y) <> None then (if y + 1 = y_length wall then y else checker 0 (y + 1)) else (if x + 1 = x_length wall then y - 1 else checker (x + 1) y) in checker 0 0 let row_string wall ~y = let result = ref "" in for i = 0 to (x_length wall) - 2 do let v = wall.(i).(y) in if Option.is_some v then result := !result ^ (A.to_string (Option.get v)) ^ "," else result := !result ^ "," done; let v = wall.(x_length wall - 1).(y) in if Option.is_some v then result := !result ^ (A.to_string (Option.get v)); !result let to_string wall = let result = ref "" in for j = 0 to (y_length wall) - 1 do result := !result ^ (row_string wall ~y:j) ^ (String.make 1 (char_of_int 10)) done; !result let print wall = print_string (to_string wall) let output channel wall = output_string channel (to_string wall) let pp_print format wall = for j = 0 to (y_length wall) - 1 do Format.pp_print_string format (row_string wall ~y:j); Format.pp_print_break format 8 0 done end