summaryrefslogtreecommitdiff
path: root/project/templates/integral.xhtml
diff options
context:
space:
mode:
Diffstat (limited to 'project/templates/integral.xhtml')
-rw-r--r--project/templates/integral.xhtml241
1 files changed, 241 insertions, 0 deletions
diff --git a/project/templates/integral.xhtml b/project/templates/integral.xhtml
new file mode 100644
index 0000000..8f2f33a
--- /dev/null
+++ b/project/templates/integral.xhtml
@@ -0,0 +1,241 @@
+
+{%- extends "base_math.xhtml" -%}
+
+
+
+{%- block title -%}Area Under the Curve of a Complex Integral{%- endblock -%}
+
+
+
+{%- block style %}
+ <link href="/css/integral.css" rel="stylesheet" />
+{% endblock -%}
+
+
+
+{%- block content %}
+<h4>Area Under the Curve of a Complex Integral</h4>
+
+<p>Scripts used to generate graphs: <a href="/dld/integral_scripts.zip">Link</a></p>
+
+<h5>29/12/2018</h5>
+
+<p>A definite integral can be represented on the xy-plane as the signed area bounded by the curve of
+the function f(x), the x-axis, and the limits of integration a and b. But it's not immediately clear
+how this definition applies for complex valued functions.</p>
+
+<p>Consider the following example:</p>
+
+<div class="precontain"><div class="mathblock">
+ <math xmlns="http://www.w3.org/1998/Math/MathML">
+ <mrow>
+ <munderover>
+ <mo>&#x222b;</mo>
+ <mn>0</mn>
+ <mn>1</mn>
+ </munderover>
+ <msup>
+ <mrow>
+ <mo>(</mo>
+ <mn>-1</mn>
+ <mo>)</mo>
+ </mrow>
+ <mi>x</mi>
+ </msup>
+ <mi>dx</mi>
+ </mrow>
+ </math>
+</div></div>
+
+<p>If the function is graphed on the xy-plane, the real valued outputs are sparse. Yet an elementary
+antiderivative exists and the definite integral is well defined.</p>
+
+<div class="figure">
+ <img src="/img/minus_one_exp_x_real_values_only.png"
+ alt="Real values only plot of minus one raised to the x power"
+ height="400"
+ width="520" />
+ <div class="figcaption">Figure 1 - Real values only</div>
+</div>
+
+<p>In order to plot a meaningful graph that can be used to potentially calculate the integral as a
+signed area, some cues are taken from Philip Lloyd's work on
+<a href="https://phantomgraphs.weebly.com/" class="external">Phantom Graphs</a>. In that work, an
+additional z-axis is used to extend the x-axis into a complex xz-plane, allowing complex inputs to
+be graphed. For the function considered here, the z-axis is instead used to extend the y-axis into a
+complex yz-plane to allow graphing of complex outputs instead.</p>
+
+<p>Upon doing so, the following helical graph is obtained:</p>
+
+<div class="figure">
+ <img src="/img/minus_one_exp_x_full_plot.png"
+ alt="Complete three dimensional graph of all values of minux one raised to the x power"
+ height="400"
+ width="520" />
+ <div class="figcaption">Figure 2 - Full graph</div>
+</div>
+
+<p>The curve is continuous and spirals around the x-axis, intersecting with the real xy-plane at the
+points plotted in the initial graph of Figure 1. However it is still not clear how to represent the
+area under the curve.</p>
+
+<p>Observing that complex numbers in cartesian form are composed of a real part and an imaginary
+part, it is possible to decompose the function into real and imaginary components. These are easy to
+obtain by rotating the graph above to view the real and imaginary parts as flat planes.</p>
+
+<table id="component">
+ <tr>
+ <td>
+ <div class="figure">
+ <img src="/img/cos_pi_x.png"
+ alt="Graph of the real component of minus one raised to the power of x"
+ height="400"
+ width="520" />
+ <div class="figcaption">Figure 3 - Real component</div>
+ </div>
+ </td>
+ <td>
+ <div class="figure">
+ <img src="/img/sin_pi_x.png"
+ alt="Graph of the imaginary component of minus one raised to the power of x"
+ height="400"
+ width="520" />
+ <div class="figcaption">Figure 4 - Imaginary component</div>
+ </div>
+ </td>
+ </tr>
+</table>
+
+<p>From this it can be seen that the function is a combination of a real valued cosine and an
+imaginary valued sine. With the limits of integration under consideration, the real values disappear
+and we are left with the following:</p>
+
+<div class="precontain"><div class="mathblock">
+ <table>
+ <tr>
+ <td colspan="2">
+ <math xmlns="http://www.w3.org/1998/Math/MathML">
+ <mrow>
+ <munderover>
+ <mo>&#x222b;</mo>
+ <mn>0</mn>
+ <mn>1</mn>
+ </munderover>
+ <msup>
+ <mrow>
+ <mo>(</mo>
+ <mn>-1</mn>
+ <mo>)</mo>
+ </mrow>
+ <mi>x</mi>
+ </msup>
+ <mi>dx</mi>
+ </mrow>
+ </math>
+ </td>
+ </tr>
+ <tr>
+ <td>=</td>
+ <td>
+ <math xmlns="http://www.w3.org/1998/Math/MathML">
+ <mrow>
+ <mi>i</mi>
+ <munderover>
+ <mo>&#x222b;</mo>
+ <mn>0</mn>
+ <mn>1</mn>
+ </munderover>
+ <mi>sin</mi>
+ <mrow>
+ <mo>(</mo>
+ <mi>&#x03c0;</mi>
+ <mo>&#x2062;</mo>
+ <mi>x</mi>
+ <mo>)</mo>
+ </mrow>
+ <mi>dx</mi>
+ </mrow>
+ </math>
+ </td>
+ </tr>
+ <tr>
+ <td>=</td>
+ <td>
+ <math xmlns="http://www.w3.org/1998/Math/MathML">
+ <mrow>
+ <mo>-</mo>
+ <mfrac>
+ <mi>i</mi>
+ <mi>&#x03c0;</mi>
+ </mfrac>
+ <msubsup>
+ <menclose notation="right">
+ <mrow>
+ <mi>cos</mi>
+ <mrow>
+ <mo>(</mo>
+ <mi>&#x03c0;</mi>
+ <mo>&#x2062;</mo>
+ <mi>x</mi>
+ <mo>)</mo>
+ </mrow>
+ </mrow>
+ </menclose>
+ <mn>0</mn>
+ <mn>1</mn>
+ </msubsup>
+ </mrow>
+ </math>
+ </td>
+ </tr>
+ <tr>
+ <td>=</td>
+ <td>
+ <math xmlns="http://www.w3.org/1998/Math/MathML">
+ <mrow>
+ <mo>-</mo>
+ <mfrac>
+ <mi>i</mi>
+ <mi>&#x03c0;</mi>
+ </mfrac>
+ <mrow>
+ <mo>(</mo>
+ <mn>-1</mn>
+ <mo>-</mo>
+ <mn>1</mn>
+ <mo>)</mo>
+ </mrow>
+ </mrow>
+ </math>
+ </td>
+ </tr>
+ <tr>
+ <td>=</td>
+ <td>
+ <math xmlns="http://www.w3.org/1998/Math/MathML">
+ <mrow>
+ <mfrac>
+ <mrow>
+ <mn>2</mn>
+ <mi>i</mi>
+ </mrow>
+ <mi>&#x03c0;</mi>
+ </mfrac>
+ </mrow>
+ </math>
+ </td>
+ </tr>
+ </table>
+</div></div>
+
+<p>This agrees with the answer obtained by ordinary evaluation of the integral without considering
+the graph, so the informal area under the curve definition still works. Considering the area under
+the curve using polar coordinates also works, but requires evaluating a less than pleasant infinite
+sum and so won't be considered here.</p>
+
+<p>The next interesting question is how this relates to the surface area of a
+<a href="https://www.mathcurve.com/surfaces.gb/helicoiddroit/helicoiddroit.shtml" class="external">
+right helicoid</a>.</p>
+{% endblock -%}
+
+