1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
module Grasp.Graph (
Node, LNode, UNode,
Edge, LEdge, UEdge,
Adj,
Context, MContext, UContext,
Decomp, GDecomp, UDecomp,
Path, LPath, UPath,
Gr,
empty,
isEmpty,
match,
mkGraph,
labNodes,
matchAny,
noNodes,
nodeRange,
labEdges,
(&),
nodes,
edges,
newNodes,
gelem,
insNode, insEdge,
delNode, delEdge, delLEdge,
insNodes, insEdges,
delNodes, delEdges,
buildGr,
mkUGraph,
context,
lab,
neighbours,
suc, pre, lsuc, lpre,
out, inn,
outdeg, indeg, deg,
equal
) where
import qualified Data.List as List
import qualified Data.Maybe as Maybe
-- this whole thing is essentially a reimplementation of Data.Graph.Inductive.Graph
-- with String nodes instead of Int nodes, because it makes the rest of the code easier
type Node = String
type LNode a = (Node, a)
type UNode = LNode ()
type Edge = (Node, Node)
type LEdge a = (Node, Node, a)
type UEdge = LEdge ()
type Adj b = [(b, Node)]
type Context a b = (Adj b, Node, a, Adj b)
type MContext a b = Maybe (Context a b)
type UContext = ([Node], Node, [Node])
type Decomp a b = (MContext a b, Gr a b)
type GDecomp a b = (Context a b, Gr a b)
type UDecomp = (Maybe UContext, Gr () ())
type Path = [Node]
newtype LPath a = LP [LNode a]
type UPath = [UNode]
data Gr a b = Gr { getLabNodes :: [LNode a]
, getLabEdges :: [LEdge b] }
deriving (Show)
instance (Eq a, Eq b) => Eq (Gr a b) where
a == b = (labNodes a == labNodes b) && (labEdges a == labEdges b)
-- class methods
empty :: Gr a b
empty = Gr [] []
isEmpty :: Gr a b -> Bool
isEmpty gr = (length (labNodes gr) == 0)
match :: Node -> Gr a b -> Decomp a b
match n gr =
if (n `notElem` nodes gr)
then (Nothing, gr)
else (Just (to, n, label, from), gr)
where
to = map (\(x,y,z) -> (z,y)) (inn gr n)
label = snd . head $ (filter (\(x,y) -> x == n) (labNodes gr))
from = map (\(x,y,z) -> (z,x)) (out gr n)
mkGraph :: [LNode a] -> [LEdge b] -> Gr a b
mkGraph lnodes ledges =
let nodes = map fst lnodes
edgeNodes = (map (\(x,y,z) -> x) ledges) `List.union` (map (\(x,y,z) -> y) ledges)
in if (all (`elem` nodes) edgeNodes)
then Gr lnodes ledges
else error "Edge Exception"
labNodes :: Gr a b -> [LNode a]
labNodes = getLabNodes
matchAny :: Gr a b -> GDecomp a b
matchAny gr =
let (mcon, gr') = match (head . nodes $ gr) gr
in if (isEmpty gr)
then error "Match Exception"
else (Maybe.fromJust mcon, gr')
noNodes :: Gr a b -> Int
noNodes = length . labNodes
nodeRange :: Gr a b -> (Node,Node)
nodeRange gr =
let nodes = map fst (labNodes gr)
in if (length nodes == 0) then ("","") else (head nodes, last nodes)
labEdges :: Gr a b -> [LEdge b]
labEdges = getLabEdges
(&) :: Context a b -> Gr a b -> Gr a b
(to, n, lab, from) & gr =
let edgesTo = map (\(z,y) -> (n,y,z)) to
edgesFrom = map (\(z,x) -> (x,n,z)) from
in (insEdges edgesTo) . (insEdges edgesFrom) . (insNode (n,lab)) $ gr
-- graph projection
nodes :: Gr a b -> [Node]
nodes gr = map fst (labNodes gr)
edges :: Gr a b -> [Edge]
edges gr = map (\(x,y,z) -> (x,y)) (labEdges gr)
newNodes :: Int -> Gr a b -> [Node]
newNodes x gr = take x (filter (`notElem` (nodes gr)) (map show [1..]))
gelem :: Node -> Gr a b -> Bool
gelem n gr = n `elem` (nodes gr)
-- graph construction and deconstruction
insNode :: LNode a -> Gr a b -> Gr a b
insNode n gr =
let preExisting = filter (\x -> fst x == fst n) (labNodes gr)
in if (length preExisting /= 0)
then error "Node Exception"
else Gr (n:(labNodes gr)) (labEdges gr)
insEdge :: LEdge b -> Gr a b -> Gr a b
insEdge (a,b,c) gr =
let from = filter (\x -> fst x == a) (labNodes gr)
to = filter (\x -> fst x == b) (labNodes gr)
in if (length from == 0 || length to == 0)
then error "Edge Exception"
else Gr (labNodes gr) ((a,b,c):(labEdges gr))
delNode :: Node -> Gr a b -> Gr a b
delNode n gr =
let nodes' = filter (\x -> fst x /= n) (labNodes gr)
edges' = filter (\(x,y,z) -> x /= n && y /= n) (labEdges gr)
in Gr nodes' edges'
delEdge :: Edge -> Gr a b -> Gr a b
delEdge e gr =
let edges' = filter (\(x,y,z) -> (x,y) /= e) (labEdges gr)
in Gr (labNodes gr) edges'
delLEdge :: (Eq b) => LEdge b -> Gr a b -> Gr a b
delLEdge e gr = Gr (labNodes gr) (filter (/= e) (labEdges gr))
insNodes :: [LNode a] -> Gr a b -> Gr a b
insNodes ns gr = List.foldl' (flip insNode) gr ns
insEdges :: [LEdge b] -> Gr a b -> Gr a b
insEdges es gr = List.foldl' (flip insEdge) gr es
delNodes :: [Node] -> Gr a b -> Gr a b
delNodes ns gr =
let nodes' = filter (\x -> fst x `notElem` ns) (labNodes gr)
edges' = filter (\(x,y,z) -> x `notElem` ns && y `notElem` ns) (labEdges gr)
in Gr nodes' edges'
delEdges :: [Edge] -> Gr a b -> Gr a b
delEdges es gr =
let edges' = filter (\(x,y,z) -> (x,y) `notElem` es) (labEdges gr)
in Gr (labNodes gr) edges'
buildGr :: [Context a b] -> Gr a b
buildGr cs = List.foldl' (flip (&)) empty cs
mkUGraph :: [Node] -> [Edge] -> Gr () ()
mkUGraph ns es = Gr (map (\x -> (x,())) ns) (map (\(x,y) -> (x,y,())) es)
-- graph inspection
context :: Gr a b -> Node -> Context a b
context gr n =
let from = map (\(x,y,z) -> (z,y)) (out gr n)
to = map (\(x,y,z) -> (z,x)) (inn gr n)
in if (n `notElem` (nodes gr))
then error "Match Exception"
else (to, n, Maybe.fromJust (lab gr n), from)
lab :: Gr a b -> Node -> Maybe a
lab gr n =
let nlist = filter (\(x,y) -> x == n) (labNodes gr)
in if (length nlist == 0) then Nothing else Just (snd . head $ nlist)
neighbours :: Gr a b -> Node -> [Node]
neighbours gr n = (suc gr n) ++ (pre gr n)
suc :: Gr a b -> Node -> [Node]
suc gr n =
if (n `notElem` (nodes gr))
then error "Match Exception"
else map (\(x,y,z) -> y) (out gr n)
pre :: Gr a b -> Node -> [Node]
pre gr n =
if (n `notElem` (nodes gr))
then error "Match Exception"
else map (\(x,y,z) -> x) (inn gr n)
lsuc :: Gr a b -> Node -> [(Node, b)]
lsuc gr n = map (\(x,y,z) -> (y,z)) (out gr n)
lpre :: Gr a b -> Node -> [(Node, b)]
lpre gr n = map (\(x,y,z) -> (x,z)) (inn gr n)
out :: Gr a b -> Node -> [LEdge b]
out gr n = filter (\(x,y,z) -> x == n) (labEdges gr)
inn :: Gr a b -> Node -> [LEdge b]
inn gr n = filter (\(x,y,z) -> y == n) (labEdges gr)
outdeg :: Gr a b -> Node -> Int
outdeg gr n = length (out gr n)
indeg :: Gr a b -> Node -> Int
indeg gr n = length (inn gr n)
deg :: Gr a b -> Node -> Int
deg gr n = (outdeg gr n) + (indeg gr n)
equal :: (Eq a, Eq b) => Gr a b -> Gr a b -> Bool
equal a b = (a == b)
|