1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
-- Programmed by Jedidiah Barber
-- Licensed under the Sunset License v1.0
-- See license.txt for further details
package body Kompsos.Arithmetic is
---------------
-- Numbers --
---------------
function Is_Number
(Item : in Term)
return Boolean is
begin
if Item.Kind = Null_Term then
return True;
elsif Item.Kind = Pair_Term and then Item.Left.Kind = Atom_Term then
if Item.Right.Kind = Null_Term then
return Item.Left.Atom = One_Element;
else
return (Item.Left.Atom = Zero_Element or else Item.Left.Atom = One_Element) and then
Is_Number (Item.Right);
end if;
else
return False;
end if;
end Is_Number;
function Build
(Value : in Natural)
return Term is
begin
if Value = 0 then
return Empty_Term;
elsif Value mod 2 = 0 then
return T (T (Zero_Element), Build (Value / 2));
else
return T (T (One_Element), Build ((Value - 1) / 2));
end if;
end Build;
function Value
(Item : in Term)
return Natural is
begin
if Item.Kind = Null_Term then
return 0;
elsif Item.Left.Atom = Zero_Element then
return 2 * Value (Item.Right);
else
return 1 + 2 * Value (Item.Right);
end if;
end Value;
------------------
-- Operations --
------------------
-- full-addero --
function Full_Adder
(This : in Goal;
Inputs : in Term_Array)
return Goal
is
Cin_Term : Term renames Inputs (1);
A_Term : Term renames Inputs (2);
B_Term : Term renames Inputs (3);
Sum_Term : Term renames Inputs (4);
Cout_Term : Term renames Inputs (5);
Outputs : Goal_Array := (1 .. 8 => This);
begin
Outputs (1).Unify (Cin_Term, Zero_Element); Outputs (2).Unify (Cin_Term, One_Element);
Outputs (1).Unify (A_Term, Zero_Element); Outputs (2).Unify (A_Term, Zero_Element);
Outputs (1).Unify (B_Term, Zero_Element); Outputs (2).Unify (B_Term, Zero_Element);
Outputs (1).Unify (Sum_Term, Zero_Element); Outputs (2).Unify (Sum_Term, One_Element);
Outputs (1).Unify (Cout_Term, Zero_Element); Outputs (2).Unify (Cout_Term, Zero_Element);
Outputs (3).Unify (Cin_Term, Zero_Element); Outputs (4).Unify (Cin_Term, One_Element);
Outputs (3).Unify (A_Term, One_Element); Outputs (4).Unify (A_Term, One_Element);
Outputs (3).Unify (B_Term, Zero_Element); Outputs (4).Unify (B_Term, Zero_Element);
Outputs (3).Unify (Sum_Term, One_Element); Outputs (4).Unify (Sum_Term, Zero_Element);
Outputs (3).Unify (Cout_Term, Zero_Element); Outputs (4).Unify (Cout_Term, One_Element);
Outputs (5).Unify (Cin_Term, Zero_Element); Outputs (6).Unify (Cin_Term, One_Element);
Outputs (5).Unify (A_Term, Zero_Element); Outputs (6).Unify (A_Term, Zero_Element);
Outputs (5).Unify (B_Term, One_Element); Outputs (6).Unify (B_Term, One_Element);
Outputs (5).Unify (Sum_Term, One_Element); Outputs (6).Unify (Sum_Term, Zero_Element);
Outputs (5).Unify (Cout_Term, Zero_Element); Outputs (6).Unify (Cout_Term, One_Element);
Outputs (7).Unify (Cin_Term, Zero_Element); Outputs (8).Unify (Cin_Term, One_Element);
Outputs (7).Unify (A_Term, One_Element); Outputs (8).Unify (A_Term, One_Element);
Outputs (7).Unify (B_Term, One_Element); Outputs (8).Unify (B_Term, One_Element);
Outputs (7).Unify (Sum_Term, Zero_Element); Outputs (8).Unify (Sum_Term, One_Element);
Outputs (7).Unify (Cout_Term, One_Element); Outputs (8).Unify (Cout_Term, One_Element);
return Disjunct (Outputs);
end Full_Adder;
procedure Full_Adder
(This : in out Goal;
Inputs : in Term_Array) is
begin
This := Full_Adder (This, Inputs);
end Full_Adder;
-- poso --
function GT_Zero
(This : in Goal;
Num_Term : in Term'Class)
return Goal is
begin
return This.Pair (Num_Term);
end GT_Zero;
procedure GT_Zero
(This : in out Goal;
Num_Term : in Term'Class) is
begin
This := GT_Zero (This, Num_Term);
end GT_Zero;
-- >1o --
function GT_One
(This : in Goal;
Num_Term : in Term'Class)
return Goal
is
Result : Goal := This;
Ref_Term : constant Term := Result.Fresh;
begin
Result.Tail (Num_Term & Ref_Term);
Result.Pair (Ref_Term);
return Result;
end GT_One;
procedure GT_One
(This : in out Goal;
Num_Term : in Term'Class) is
begin
This := GT_One (This, Num_Term);
end GT_One;
-- addero --
function Adder
(This : in Goal;
Inputs : in Term_Array)
return Goal
is
Cin_Term : Term renames Inputs (1);
N_Term : Term renames Inputs (2);
M_Term : Term renames Inputs (3);
Result_Term : Term renames Inputs (4);
Outputs : Goal_Array := (1 .. 8 => This);
begin
Outputs (1).Unify (Cin_Term, Zero_Element);
Outputs (1).Unify (M_Term, Zero_Term);
Outputs (1).Unify (N_Term, Result_Term);
Outputs (2).Unify (Cin_Term, Zero_Element);
Outputs (2).Unify (N_Term, Zero_Term);
Outputs (2).Unify (M_Term, Result_Term);
GT_Zero (Outputs (2), M_Term);
Outputs (3).Unify (Cin_Term, One_Element);
Outputs (3).Unify (M_Term, Zero_Term);
Outputs (3).Conjunct (Adder_Access, T (Zero_Element) & N_Term & One_Term & Result_Term);
Outputs (4).Unify (Cin_Term, One_Element);
Outputs (4).Unify (N_Term, Zero_Term);
GT_Zero (Outputs (4), M_Term);
Outputs (4).Conjunct (Adder_Access, T (Zero_Element) & One_Term & M_Term & Result_Term);
Outputs (5).Unify (N_Term, One_Term);
Outputs (5).Unify (M_Term, One_Term);
declare
A_Var : constant Term := Outputs (5).Fresh;
C_Var : constant Term := Outputs (5).Fresh;
begin
Outputs (5).Unify (T (A_Var, C_Var), Result_Term);
Full_Adder (Outputs (5), Cin_Term & T (One_Element) & T (One_Element) & A_Var & C_Var);
end;
Outputs (6).Unify (N_Term, One_Term);
GT_One (Outputs (6), M_Term);
Outputs (6).Conjunct (General_Adder_Access, Inputs);
Outputs (7).Unify (M_Term, One_Term);
GT_One (Outputs (7), N_Term);
GT_One (Outputs (7), Result_Term);
Outputs (7).Conjunct (Adder_Access, Cin_Term & One_Term & N_Term & Result_Term);
GT_One (Outputs (8), N_Term);
GT_One (Outputs (8), M_Term);
Outputs (8).Conjunct (General_Adder_Access, Inputs);
return Disjunct (Outputs);
end Adder;
procedure Adder
(This : in out Goal;
Inputs : in Term_Array) is
begin
This := Adder (This, Inputs);
end Adder;
-- gen-addero --
function General_Adder
(This : in Goal;
Inputs : in Term_Array)
return Goal
is
Cin_Term : Term renames Inputs (1);
N_Term : Term renames Inputs (2);
M_Term : Term renames Inputs (3);
Result_Term : Term renames Inputs (4);
Result : Goal := This;
A_Var : constant Term := Result.Fresh;
B_Var : constant Term := Result.Fresh;
C_Var : constant Term := Result.Fresh;
D_Var : constant Term := Result.Fresh;
X_Var : constant Term := Result.Fresh;
Y_Var : constant Term := Result.Fresh;
Z_Var : constant Term := Result.Fresh;
begin
Result.Unify (T (A_Var, X_Var), N_Term);
Result.Unify (T (B_Var, Y_Var), M_Term);
GT_Zero (Result, Y_Var);
Result.Unify (T (C_Var, Z_Var), Result_Term);
GT_Zero (Result, Z_Var);
Full_Adder (Result, Cin_Term & A_Var & B_Var & C_Var & D_Var);
Result.Conjunct (Adder_Access, D_Var & X_Var & Y_Var & Z_Var);
return Result;
end General_Adder;
procedure General_Adder
(This : in out Goal;
Inputs : in Term_Array) is
begin
This := General_Adder (This, Inputs);
end General_Adder;
-- +o --
function Add
(This : in Goal;
Inputs : in Term_Array)
return Goal is
begin
return Adder (This, T (Zero_Element) & Inputs);
end Add;
procedure Add
(This : in out Goal;
Inputs : in Term_Array) is
begin
This := Add (This, Inputs);
end Add;
-- -o --
function Subtract
(This : in Goal;
Inputs : in Term_Array)
return Goal
is
N_Term : Term renames Inputs (1);
M_Term : Term renames Inputs (2);
Result_Term : Term renames Inputs (3);
begin
return Add (This, M_Term & Result_Term & N_Term);
end Subtract;
procedure Subtract
(This : in out Goal;
Inputs : in Term_Array) is
begin
This := Subtract (This, Inputs);
end Subtract;
end Kompsos.Arithmetic;
|