aboutsummaryrefslogtreecommitdiff
path: root/src/kompsos-math.adb
blob: 8de7c9f4d09866b3290c124493e0688916814b44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810


--  Programmed by Jedidiah Barber
--  Licensed under the Sunset License v1.0

--  See license.txt for further details


package body Kompsos.Math is


    ----------------
    --  Accesses  --
    ----------------

    --  These are needed for some really dumb reason about not allowing 'Access
    --  in a generic body when the access type is declared outside the generic.

    --  Can't apply 'Unchecked_Access to a subprogram either, so we're doing this.

    LT_Length_Access : constant access function
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal := LT_Length'Access;

    EQ_Length_Access : constant access function
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal := EQ_Length'Access;

    Adder_Access : constant access function
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal := Adder'Access;

    General_Adder_Access : constant access function
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal := General_Adder'Access;

    Multiply_Access : constant access function
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal := Multiply'Access;

    Odd_Multiply_Access : constant access function
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal := Odd_Multiply'Access;

    Bounded_Multiply_Access : constant access function
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal := Bounded_Multiply'Access;

    Repeated_Multiply_Access : constant access function
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal := Repeated_Multiply'Access;




    ---------------
    --  Numbers  --
    ---------------

    function Is_Number
           (Item : in Term)
        return Boolean is
    begin
        if Item.Kind = Null_Term then
            return True;
        elsif Item.Kind = Pair_Term and then Item.Left.Kind = Atom_Term then
            if Item.Right.Kind = Null_Term then
                return Item.Left.Atom = One_Element;
            else
                return (Item.Left.Atom = Zero_Element or else Item.Left.Atom = One_Element) and then
                    Is_Number (Item.Right);
            end if;
        else
            return False;
        end if;
    end Is_Number;


    function Build
           (Value : in Natural)
        return Term is
    begin
        if Value = 0 then
            return Empty_Term;
        elsif Value mod 2 = 0 then
            return T (T (Zero_Element), Build (Value / 2));
        else
            return T (T (One_Element), Build ((Value - 1) / 2));
        end if;
    end Build;


    function Value
           (Item : in Term)
        return Natural is
    begin
        if Item.Kind = Null_Term then
            return 0;
        elsif Item.Left.Atom = Zero_Element then
            return 2 * Value (Item.Right);
        else
            return 1 + 2 * Value (Item.Right);
        end if;
    end Value;




    ------------------
    --  Comparison  --
    ------------------

    --  poso  --

    function GT_Zero
           (This     : in Goal;
            Num_Term : in Term'Class)
        return Goal is
    begin
        return This.Pair (Num_Term);
    end GT_Zero;


    procedure GT_Zero
           (This     : in out Goal;
            Num_Term : in     Term'Class) is
    begin
        This := GT_Zero (This, Num_Term);
    end GT_Zero;



    --  >1o  --

    function GT_One
           (This     : in Goal;
            Num_Term : in Term'Class)
        return Goal
    is
        Result : Goal := This;
        Ref_Term : constant Term := Result.Fresh;
    begin
        Result.Tail (Num_Term & Ref_Term);
        Result.Pair (Ref_Term);
        return Result;
    end GT_One;


    procedure GT_One
           (This     : in out Goal;
            Num_Term : in     Term'Class) is
    begin
        This := GT_One (This, Num_Term);
    end GT_One;



    --  <lo  --

    function LT_Length
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal
    is
        N_Term : Term renames Inputs (1);
        M_Term : Term renames Inputs (2);

        One, Two, Three : Goal := This;

        X_Var : constant Term := Three.Fresh;
        Y_Var : constant Term := Three.Fresh;
    begin
        One.Unify (N_Term, Zero_Term);
        GT_Zero (One, M_Term);

        Two.Unify (N_Term, One_Term);
        GT_One (Two, M_Term);

        Three.Unify (N_Term, T (Three.Fresh, X_Var));
        GT_Zero (Three, X_Var);
        Three.Unify (M_Term, T (Three.Fresh, Y_Var));
        GT_Zero (Three, Y_Var);
        Three.Conjunct (LT_Length_Access, X_Var & Y_Var);

        return Disjunct (One & Two & Three);
    end LT_Length;


    procedure LT_Length
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := LT_Length (This, Inputs);
    end LT_Length;



    --  <=lo  --

    function LTE_Length
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal is
    begin
        return Disjunct
           (EQ_Length (This, Inputs),
            LT_Length (This, Inputs));
    end LTE_Length;


    procedure LTE_Length
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := LTE_Length (This, Inputs);
    end LTE_Length;



    --  =lo  --

    function EQ_Length
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal
    is
        N_Term : Term renames Inputs (1);
        M_Term : Term renames Inputs (2);

        One, Two, Three : Goal := This;

        X_Var : constant Term := Three.Fresh;
        Y_Var : constant Term := Three.Fresh;
    begin
        One.Unify (N_Term, Zero_Term);
        One.Unify (M_Term, Zero_Term);

        Two.Unify (N_Term, One_Term);
        Two.Unify (M_Term, One_Term);

        Three.Unify (N_Term, T (Three.Fresh, X_Var));
        GT_Zero (Three, X_Var);
        Three.Unify (M_Term, T (Three.Fresh, Y_Var));
        GT_Zero (Three, Y_Var);
        Three.Conjunct (EQ_Length_Access, X_Var & Y_Var);

        return Disjunct (One & Two & Three);
    end EQ_Length;


    procedure EQ_Length
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := EQ_Length (This, Inputs);
    end EQ_Length;



    --  (extra function)  --

    function GTE_Length
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal is
    begin
        return LTE_Length (This, Inputs (2) & Inputs (1));
    end GTE_Length;


    procedure GTE_Length
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := GTE_Length (This, Inputs);
    end GTE_Length;



    --  (extra function)  --

    function GT_Length
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal is
    begin
        return LT_Length (This, Inputs (2) & Inputs (1));
    end GT_Length;


    procedure GT_Length
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := GT_Length (This, Inputs);
    end GT_Length;



    --  <o  --

    function LT
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal
    is
        N_Term : Term renames Inputs (1);
        M_Term : Term renames Inputs (2);

        One, Two : Goal := This;

        X_Var : constant Term := Two.Fresh;
    begin
        LT_Length (One, Inputs);

        EQ_Length (Two, Inputs);
        GT_Zero (Two, X_Var);
        Add (Two, N_Term & X_Var & M_Term);

        return Disjunct (One, Two);
    end LT;


    procedure LT
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := LT (This, Inputs);
    end LT;



    --  <=o  --

    function LTE
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal is
    begin
        return Disjunct
           (This.Unify (Inputs (1), Inputs (2)),
            LT (This, Inputs));
    end LTE;


    procedure LTE
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := LTE (This, Inputs);
    end LTE;



    --  (extra function)  --

    function GTE
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal is
    begin
        return LTE (This, Inputs (2) & Inputs (1));
    end GTE;


    procedure GTE
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := GTE (This, Inputs);
    end GTE;



    --  (extra function)  --

    function GT
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal is
    begin
        return LT (This, Inputs (2) & Inputs (1));
    end GT;


    procedure GT
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := GT (This, Inputs);
    end GT;




    ------------------
    --  Arithmetic  --
    ------------------

    --  full-addero  --

    function Full_Adder
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal
    is
        Cin_Term  : Term renames Inputs (1);
        A_Term    : Term renames Inputs (2);
        B_Term    : Term renames Inputs (3);
        Sum_Term  : Term renames Inputs (4);
        Cout_Term : Term renames Inputs (5);

        Outputs : Goal_Array := (1 .. 8 => This);
    begin
        Outputs (1).Unify (Cin_Term,  Zero_Element);    Outputs (2).Unify (Cin_Term,   One_Element);
        Outputs (1).Unify (A_Term,    Zero_Element);    Outputs (2).Unify (A_Term,    Zero_Element);
        Outputs (1).Unify (B_Term,    Zero_Element);    Outputs (2).Unify (B_Term,    Zero_Element);
        Outputs (1).Unify (Sum_Term,  Zero_Element);    Outputs (2).Unify (Sum_Term,   One_Element);
        Outputs (1).Unify (Cout_Term, Zero_Element);    Outputs (2).Unify (Cout_Term, Zero_Element);

        Outputs (3).Unify (Cin_Term,  Zero_Element);    Outputs (4).Unify (Cin_Term,   One_Element);
        Outputs (3).Unify (A_Term,     One_Element);    Outputs (4).Unify (A_Term,     One_Element);
        Outputs (3).Unify (B_Term,    Zero_Element);    Outputs (4).Unify (B_Term,    Zero_Element);
        Outputs (3).Unify (Sum_Term,   One_Element);    Outputs (4).Unify (Sum_Term,  Zero_Element);
        Outputs (3).Unify (Cout_Term, Zero_Element);    Outputs (4).Unify (Cout_Term,  One_Element);

        Outputs (5).Unify (Cin_Term,  Zero_Element);    Outputs (6).Unify (Cin_Term,   One_Element);
        Outputs (5).Unify (A_Term,    Zero_Element);    Outputs (6).Unify (A_Term,    Zero_Element);
        Outputs (5).Unify (B_Term,     One_Element);    Outputs (6).Unify (B_Term,     One_Element);
        Outputs (5).Unify (Sum_Term,   One_Element);    Outputs (6).Unify (Sum_Term,  Zero_Element);
        Outputs (5).Unify (Cout_Term, Zero_Element);    Outputs (6).Unify (Cout_Term,  One_Element);

        Outputs (7).Unify (Cin_Term,  Zero_Element);    Outputs (8).Unify (Cin_Term,   One_Element);
        Outputs (7).Unify (A_Term,     One_Element);    Outputs (8).Unify (A_Term,     One_Element);
        Outputs (7).Unify (B_Term,     One_Element);    Outputs (8).Unify (B_Term,     One_Element);
        Outputs (7).Unify (Sum_Term,  Zero_Element);    Outputs (8).Unify (Sum_Term,   One_Element);
        Outputs (7).Unify (Cout_Term,  One_Element);    Outputs (8).Unify (Cout_Term,  One_Element);

        return Disjunct (Outputs);
    end Full_Adder;


    procedure Full_Adder
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := Full_Adder (This, Inputs);
    end Full_Adder;



    --  addero  --

    function Adder
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal
    is
        Cin_Term : Term renames Inputs (1);
        N_Term   : Term renames Inputs (2);
        M_Term   : Term renames Inputs (3);
        Sum_Term : Term renames Inputs (4);

        Outputs : Goal_Array := (1 .. 8 => This);
    begin
        Outputs (1).Unify (Cin_Term, Zero_Element);
        Outputs (1).Unify (M_Term, Zero_Term);
        Outputs (1).Unify (N_Term, Sum_Term);

        Outputs (2).Unify (Cin_Term, Zero_Element);
        Outputs (2).Unify (N_Term, Zero_Term);
        Outputs (2).Unify (M_Term, Sum_Term);
        GT_Zero (Outputs (2), M_Term);

        Outputs (3).Unify (Cin_Term, One_Element);
        Outputs (3).Unify (M_Term, Zero_Term);
        Outputs (3).Conjunct (Adder_Access, T (Zero_Element) & N_Term & One_Term & Sum_Term);

        Outputs (4).Unify (Cin_Term, One_Element);
        Outputs (4).Unify (N_Term, Zero_Term);
        GT_Zero (Outputs (4), M_Term);
        Outputs (4).Conjunct (Adder_Access, T (Zero_Element) & One_Term & M_Term & Sum_Term);

        Outputs (5).Unify (N_Term, One_Term);
        Outputs (5).Unify (M_Term, One_Term);
        declare
            A_Var : constant Term := Outputs (5).Fresh;
            C_Var : constant Term := Outputs (5).Fresh;
        begin
            Outputs (5).Unify (T (A_Var, C_Var), Sum_Term);
            Full_Adder (Outputs (5), Cin_Term & T (One_Element) & T (One_Element) & A_Var & C_Var);
        end;

        Outputs (6).Unify (N_Term, One_Term);
        GT_One (Outputs (6), M_Term);
        Outputs (6).Conjunct (General_Adder_Access, Inputs);

        Outputs (7).Unify (M_Term, One_Term);
        GT_One (Outputs (7), N_Term);
        GT_One (Outputs (7), Sum_Term);
        Outputs (7).Conjunct (Adder_Access, Cin_Term & One_Term & N_Term & Sum_Term);

        GT_One (Outputs (8), N_Term);
        GT_One (Outputs (8), M_Term);
        Outputs (8).Conjunct (General_Adder_Access, Inputs);

        return Disjunct (Outputs);
    end Adder;


    procedure Adder
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := Adder (This, Inputs);
    end Adder;



    --  gen-addero  --

    function General_Adder
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal
    is
        Cin_Term : Term renames Inputs (1);
        N_Term   : Term renames Inputs (2);
        M_Term   : Term renames Inputs (3);
        Sum_Term : Term renames Inputs (4);

        Result : Goal := This;

        A_Var : constant Term := Result.Fresh;
        B_Var : constant Term := Result.Fresh;
        C_Var : constant Term := Result.Fresh;
        D_Var : constant Term := Result.Fresh;
        X_Var : constant Term := Result.Fresh;
        Y_Var : constant Term := Result.Fresh;
        Z_Var : constant Term := Result.Fresh;
    begin
        Result.Unify (T (A_Var, X_Var), N_Term);
        Result.Unify (T (B_Var, Y_Var), M_Term);
        GT_Zero (Result, Y_Var);
        Result.Unify (T (C_Var, Z_Var), Sum_Term);
        GT_Zero (Result, Z_Var);
        Full_Adder (Result, Cin_Term & A_Var & B_Var & C_Var & D_Var);
        Result.Conjunct (Adder_Access, D_Var & X_Var & Y_Var & Z_Var);
        return Result;
    end General_Adder;


    procedure General_Adder
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := General_Adder (This, Inputs);
    end General_Adder;



    --  +o  --

    function Add
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal is
    begin
        return Adder (This, T (Zero_Element) & Inputs);
    end Add;


    procedure Add
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := Add (This, Inputs);
    end Add;



    --  -o  --

    function Subtract
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal
    is
        N_Term          : Term renames Inputs (1);
        M_Term          : Term renames Inputs (2);
        Difference_Term : Term renames Inputs (3);
    begin
        return Add (This, M_Term & Difference_Term & N_Term);
    end Subtract;


    procedure Subtract
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := Subtract (This, Inputs);
    end Subtract;



    --  *o  --

    function Multiply
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal
    is
        N_Term       : Term renames Inputs (1);
        M_Term       : Term renames Inputs (2);
        Product_Term : Term renames Inputs (3);

        Outputs : Goal_Array := (1 .. 7 => This);
    begin
        Outputs (1).Unify (N_Term, Zero_Term);
        Outputs (1).Unify (Product_Term, Zero_Term);

        GT_Zero (Outputs (2), N_Term);
        Outputs (2).Unify (M_Term, Zero_Term);
        Outputs (2).Unify (Product_Term, Zero_Term);

        Outputs (3).Unify (N_Term, One_Term);
        GT_Zero (Outputs (3), M_Term);
        Outputs (3).Unify (M_Term, Product_Term);

        GT_One (Outputs (4), N_Term);
        Outputs (4).Unify (M_Term, One_Term);
        Outputs (4).Unify (N_Term, Product_Term);

        declare
            X_Var : constant Term := Outputs (5).Fresh;
            Z_Var : constant Term := Outputs (5).Fresh;
        begin
            Outputs (5).Unify (T (T (Zero_Element), X_Var), N_Term);
            GT_Zero (Outputs (5), X_Var);
            Outputs (5).Unify (T (T (Zero_Element), Z_Var), Product_Term);
            GT_Zero (Outputs (5), Z_Var);
            GT_One (Outputs (5), M_Term);
            Outputs (5).Conjunct (Multiply_Access, X_Var & M_Term & Z_Var);
        end;

        declare
            X_Var : constant Term := Outputs (6).Fresh;
            Y_Var : constant Term := Outputs (6).Fresh;
        begin
            Outputs (6).Unify (T (T (One_Element), X_Var), N_Term);
            GT_Zero (Outputs (6), X_Var);
            Outputs (6).Unify (T (T (Zero_Element), Y_Var), M_Term);
            GT_Zero (Outputs (6), Y_Var);
            Outputs (6).Conjunct (Multiply_Access, M_Term & N_Term & Product_Term);
        end;

        declare
            X_Var : constant Term := Outputs (7).Fresh;
            Y_Var : constant Term := Outputs (7).Fresh;
        begin
            Outputs (7).Unify (T (T (One_Element), X_Var), N_Term);
            GT_Zero (Outputs (7), X_Var);
            Outputs (7).Unify (T (T (One_Element), Y_Var), M_Term);
            GT_Zero (Outputs (7), Y_Var);
            Outputs (7).Conjunct (Odd_Multiply_Access, X_Var & N_Term & M_Term & Product_Term);
        end;

        return Disjunct (Outputs);
    end Multiply;


    procedure Multiply
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := Multiply (This, Inputs);
    end Multiply;



    --  odd-*o  --

    function Odd_Multiply
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal
    is
        X_Term       : Term renames Inputs (1);
        N_Term       : Term renames Inputs (2);
        M_Term       : Term renames Inputs (3);
        Product_Term : Term renames Inputs (4);

        Result : Goal := This;

        Q_Var : constant Term := Result.Fresh;
    begin
        Bounded_Multiply (Result, Q_Var & Product_Term & N_Term & M_Term);
        Multiply (Result, X_Term & M_Term & Q_Var);
        Add (Result, T (T (Zero_Element), Q_Var) & M_Term & Product_Term);
        return Result;
    end Odd_Multiply;


    procedure Odd_Multiply
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := Odd_Multiply (This, Inputs);
    end Odd_Multiply;



    --  bound-*o  --

    function Bounded_Multiply
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal
    is
        Q_Term       : Term renames Inputs (1);
        Product_Term : Term renames Inputs (2);
        N_Term       : Term renames Inputs (3);
        M_Term       : Term renames Inputs (4);

        One, Two : Goal := This;

        X_Var : constant Term := Two.Fresh;
        Y_Var : constant Term := Two.Fresh;
        Z_Var : constant Term := Two.Fresh;
    begin
        One.Nil (Q_Term);
        One.Pair (Product_Term);

        Two.Tail (Q_Term & X_Var);
        Two.Tail (Product_Term & Y_Var);
        declare
            Two_A, Two_B : Goal := Two;
        begin
            Two_A.Nil (N_Term);
            Two_A.Tail (M_Term & Z_Var);
            Two_A.Conjunct (Bounded_Multiply_Access, X_Var & Y_Var & Z_Var & Zero_Term);

            Two_B.Tail (N_Term & Z_Var);
            Two_B.Conjunct (Bounded_Multiply_Access, X_Var & Y_Var & Z_Var & M_Term);

            return Disjunct (One & Two_A & Two_B);
        end;
    end Bounded_Multiply;


    procedure Bounded_Multiply
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := Bounded_Multiply (This, Inputs);
    end Bounded_Multiply;



    --  repeated-mul  --

    function Repeated_Multiply
           (This   : in Goal;
            Inputs : in Term_Array)
        return Goal
    is
        Base_Term     : Term renames Inputs (1);
        Exponent_Term : Term renames Inputs (2);
        Product_Term  : Term renames Inputs (3);

        One, Two, Three : Goal := This;

        New_Exponent    : constant Term := Three.Fresh;
        Partial_Product : constant Term := Three.Fresh;
    begin
        GT_Zero (One, Base_Term);
        One.Unify (Exponent_Term, Zero_Term);
        One.Unify (Product_Term, One_Term);

        Two.Unify (Exponent_Term, One_Term);
        Two.Unify (Base_Term, Product_Term);

        GT_One (Three, Exponent_Term);
        Subtract (Three, Exponent_Term & One_Term & New_Exponent);
        Three.Conjunct (Repeated_Multiply_Access, Base_Term & New_Exponent & Partial_Product);
        Multiply (Three, Partial_Product & Base_Term & Product_Term);

        return Disjunct (One & Two & Three);
    end Repeated_Multiply;


    procedure Repeated_Multiply
           (This   : in out Goal;
            Inputs : in     Term_Array) is
    begin
        This := Repeated_Multiply (This, Inputs);
    end Repeated_Multiply;


end Kompsos.Math;