1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
|
-- Programmed by Jedidiah Barber
-- Licensed under the Sunset License v1.0
-- See license.txt for further details
package body Kompsos is
-----------------
-- Datatypes --
-----------------
-- Terms --
function Kind
(This : in Term)
return Term_Kind is
begin
return Term_Component (This.Actual.Constant_Reference.Element.all).Kind;
end Kind;
function T
(Item : in Element_Type)
return Term is
begin
return (Actual => Term_Holders.To_Holder (Term_Component'(
Kind => Atom_Term,
Value => Item)));
end T;
function T
(Item : in Variable)
return Term is
begin
return (Actual => Term_Holders.To_Holder (Term_Component'(
Kind => Var_Term,
Refer => Item)));
end T;
function T
(Item1, Item2 : in Term'Class)
return Term is
begin
return (Actual => Term_Holders.To_Holder (Term_Component'(
Kind => Pair_Term,
Left => Term (Item1),
Right => Term (Item2))));
end T;
function T
(Items : in Term_Array)
return Term is
begin
if Items'Length = 0 then
return Empty_Term;
else
return T (Items (Items'First), T (Items (Items'First + 1 .. Items'Last)));
end if;
end T;
function Atom
(This : in Term)
return Element_Type is
begin
return Term_Component (This.Actual.Constant_Reference.Element.all).Value;
end Atom;
function Var
(This : in Term'Class)
return Variable is
begin
return Term_Component (This.Actual.Constant_Reference.Element.all).Refer;
end Var;
function Name
(This : in Term)
return Nametag is
begin
return This.Var.Name;
end Name;
function Left
(This : in Term)
return Term is
begin
return Term_Component (This.Actual.Constant_Reference.Element.all).Left;
end Left;
function Right
(This : in Term)
return Term is
begin
return Term_Component (This.Actual.Constant_Reference.Element.all).Right;
end Right;
-- Worlds --
function Hold
(This : in World)
return World_Holders.Holder is
begin
return World_Holders.To_Holder (World_Root'Class (This));
end Hold;
function Ptr
(This : in out World_Holders.Holder)
return World_Access is
begin
return World (This.Reference.Element.all)'Unchecked_Access;
end Ptr;
procedure Swap
(Left, Right : in out World_Holders.Holder)
is
Temp : World_Holders.Holder;
begin
Temp.Move (Left);
Left.Move (Right);
Right.Move (Temp);
end Swap;
------------------------
-- Internal Helpers --
------------------------
-- Variable IDs --
Next_Generator_ID : Generator_ID_Number := Generator_ID_Number'First;
function Next_Gen
return Generator_ID_Number is
begin
return Result : constant Generator_ID_Number := Next_Generator_ID do
Next_Generator_ID := Next_Generator_ID + 1;
end return;
end Next_Gen;
-- Unification --
function Fully_Contains
(This : in State;
Item : in Term'Class)
return Boolean is
begin
case Item.Kind is
when Null_Term | Atom_Term =>
return True;
when Var_Term =>
return This.Ident.Contains (Item.Var.Ident);
when Pair_Term =>
return Fully_Contains (This, Item.Left) and then Fully_Contains (This, Item.Right);
end case;
end Fully_Contains;
function Walk
(This : in State;
Item : in Term'Class)
return Term'Class is
begin
if Item.Kind = Var_Term and then
This.Subst.Contains (This.Ident.Element (Item.Var.Ident))
then
return Walk (This, This.Subst.Constant_Reference (This.Ident.Element (Item.Var.Ident)));
else
return Item;
end if;
end Walk;
function Do_Unify
(Potential : in State;
Left, Right : in Term'Class;
Extended : out State)
return Boolean
is
Real_Left : Term'Class := Left;
Real_Right : Term'Class := Right;
begin
-- Check for Variable validity with respect to State
if not Fully_Contains (Potential, Real_Left) or
not Fully_Contains (Potential, Real_Right)
then
return False;
end if;
-- Resolve Variable substitution
if Left.Kind = Var_Term then
Real_Left := Walk (Potential, Real_Left);
end if;
if Right.Kind = Var_Term then
Real_Right := Walk (Potential, Real_Right);
end if;
-- Unify equal Variable/Atom/Null Terms
if (Real_Left.Kind = Var_Term and then
Real_Right.Kind = Var_Term and then
Real_Left = Real_Right) or else
(Real_Left.Kind = Atom_Term and then
Real_Right.Kind = Atom_Term and then
Real_Left = Real_Right) or else
(Real_Left.Kind = Null_Term and Real_Right.Kind = Null_Term)
then
Extended := Potential;
return True;
end if;
-- Unify Variable and other Terms by introducing a new substitution
if Real_Left.Kind = Var_Term then
Extended := Potential;
Extended.Subst.Insert (Extended.Ident.Element (Real_Left.Var.Ident), Term (Real_Right));
return True;
end if;
if Real_Right.Kind = Var_Term then
Extended := Potential;
Extended.Subst.Insert (Extended.Ident.Element (Real_Right.Var.Ident), Term (Real_Left));
return True;
end if;
-- Unify Pair Terms by unifying each corresponding part
if Real_Left.Kind = Pair_Term and then Real_Right.Kind = Pair_Term then
declare
Middle : State;
begin
return Do_Unify (Potential, Real_Left.Left, Real_Right.Left, Middle) and then
Do_Unify (Middle, Real_Left.Right, Real_Right.Right, Extended);
end;
end if;
-- Not sure how things get here, but if all else fails
return False;
end Do_Unify;
-- Lazy World Generation --
function Has_State
(This : in out World;
Index : in Positive)
return Boolean is
begin
This.Roll_Until (Index);
return This.Possibles.Last_Index >= Index;
end Has_State;
procedure Roll_Fresh_Gen
(This : in out World) is
begin
Ptr (This.Engine.Frs_World).Rollover;
for Potential of Ptr (This.Engine.Frs_World).Possibles loop
Potential.LVars.Append (This.Engine.Frs_Name);
Potential.Ident.Insert (This.Engine.Frs_Ident, Potential.LVars.Last_Index);
This.Possibles.Append (Potential);
end loop;
if Ptr (This.Engine.Frs_World).Engine.Kind = No_Gen then
This.Engine := (Kind => No_Gen);
else
Ptr (This.Engine.Frs_World).Possibles.Clear;
end if;
end Roll_Fresh_Gen;
procedure Roll_Unify_Gen
(This : in out World)
is
Extended : State;
begin
Ptr (This.Engine.Uni_World).Rollover;
for Potential of Ptr (This.Engine.Uni_World).Possibles loop
if Do_Unify (Potential, This.Engine.Uni_Term1, This.Engine.Uni_Term2, Extended) then
This.Possibles.Append (Extended);
end if;
end loop;
if Ptr (This.Engine.Uni_World).Engine.Kind = No_Gen then
This.Engine := (Kind => No_Gen);
else
Ptr (This.Engine.Uni_World).Possibles.Clear;
end if;
end Roll_Unify_Gen;
procedure Roll_Buffer_Gen
(This : in out World) is
begin
Ptr (This.Engine.Buff_World).Rollover;
This.Possibles.Append (Ptr (This.Engine.Buff_World).Possibles);
if Ptr (This.Engine.Buff_World).Engine.Kind = No_Gen then
This.Engine := (Kind => No_Gen);
else
Ptr (This.Engine.Buff_World).Possibles.Clear;
end if;
end Roll_Buffer_Gen;
procedure Roll_Disjunct_Gen
(This : in out World) is
begin
Ptr (This.Engine.Dis_World1).Rollover;
This.Possibles.Append (Ptr (This.Engine.Dis_World1).Possibles);
if Ptr (This.Engine.Dis_World1).Engine.Kind = No_Gen then
This.Engine := (Kind => Buffer_Gen, Buff_World => This.Engine.Dis_World2);
else
Ptr (This.Engine.Dis_World1).Possibles.Clear;
Swap (This.Engine.Dis_World1, This.Engine.Dis_World2);
end if;
end Roll_Disjunct_Gen;
procedure Roll_Conjunct_Zero_Gen
(This : in out World)
is
use type Ada.Containers.Count_Type;
begin
Ptr (This.Engine.ConZ_World).Rollover;
if Ptr (This.Engine.ConZ_World).Possibles.Length > 0 then
declare
Next : constant World := This.Engine.ConZ_Func (Ptr (This.Engine.ConZ_World).all);
begin
This := Next;
end;
elsif Ptr (This.Engine.ConZ_World).Engine.Kind = No_Gen then
This.Engine := (Kind => No_Gen);
end if;
end Roll_Conjunct_Zero_Gen;
procedure Roll_Conjunct_One_Gen
(This : in out World)
is
use type Ada.Containers.Count_Type;
begin
Ptr (This.Engine.ConO_World).Rollover;
if Ptr (This.Engine.ConO_World).Possibles.Length > 0 then
declare
Next : constant World := This.Engine.ConO_Func
(Ptr (This.Engine.ConO_World).all,
This.Engine.ConO_Input);
begin
This := Next;
end;
elsif Ptr (This.Engine.ConO_World).Engine.Kind = No_Gen then
This.Engine := (Kind => No_Gen);
end if;
end Roll_Conjunct_One_Gen;
procedure Roll_Conjunct_Many_Gen
(This : in out World)
is
use type Ada.Containers.Count_Type;
begin
Ptr (This.Engine.ConM_World).Rollover;
if Ptr (This.Engine.ConM_World).Possibles.Length > 0 then
declare
Next : constant World := This.Engine.ConM_Func
(Ptr (This.Engine.ConM_World).all,
This.Engine.ConM_Inputs.Constant_Reference);
begin
This := Next;
end;
elsif Ptr (This.Engine.ConM_World).Engine.Kind = No_Gen then
This.Engine := (Kind => No_Gen);
end if;
end Roll_Conjunct_Many_Gen;
procedure Roll_Recurse_Gen
(This : in out World) is
begin
Ptr (This.Engine.Rec_World).Rollover;
if Ptr (This.Engine.Rec_World).Possibles.Last_Index < This.Engine.Rec_Index then
if Ptr (This.Engine.Rec_World).Engine.Kind = No_Gen then
if This.Engine.Rec_Index = 1 then
This.Engine := (Kind => No_Gen);
else
This.Engine.Rec_Index := 1;
end if;
end if;
return;
end if;
for Index in Integer range
This.Engine.Rec_Index .. Ptr (This.Engine.Rec_World).Possibles.Last_Index
loop
This.Possibles.Append (Ptr (This.Engine.Rec_World).Possibles (Index));
end loop;
This.Engine.Rec_Index := Ptr (This.Engine.Rec_World).Possibles.Last_Index + 1;
end Roll_Recurse_Gen;
procedure Rollover
(This : in out World) is
begin
case This.Engine.Kind is
when No_Gen => null;
when Fresh_Gen => This.Roll_Fresh_Gen;
when Unify_Gen => This.Roll_Unify_Gen;
when Buffer_Gen => This.Roll_Buffer_Gen;
when Disjunct_Gen => This.Roll_Disjunct_Gen;
when Conjunct_Zero_Gen => This.Roll_Conjunct_Zero_Gen;
when Conjunct_One_Gen => This.Roll_Conjunct_One_Gen;
when Conjunct_Many_Gen => This.Roll_Conjunct_Many_Gen;
when Recurse_Gen => This.Roll_Recurse_Gen;
end case;
end Rollover;
procedure Roll_Until
(This : in out World;
Index : in Positive) is
begin
while This.Possibles.Last_Index < Index and This.Engine.Kind /= No_Gen loop
This.Rollover;
end loop;
end Roll_Until;
-------------------
-- microKanren --
-------------------
-- Variable Introduction --
function Fresh
(This : in out World'Class)
return Term is
begin
return This.Fresh (+"");
end Fresh;
function Fresh
(This : in out World'Class;
Name : in String)
return Term is
begin
return This.Fresh (+Name);
end Fresh;
function Fresh
(This : in out World'Class;
Name : in Nametag)
return Term
is
My_ID : constant Generator_ID_Number := Next_Gen;
begin
return My_Term : constant Term := T (Variable'(Ident => My_ID, Name => Name)) do
This.Engine :=
(Kind => Fresh_Gen,
Frs_Ident => My_ID,
Frs_World => Hold (This),
Frs_Name => Name);
This.Possibles := State_Vectors.Empty_Vector;
end return;
end Fresh;
function Fresh
(This : in out World'Class;
Count : in Positive)
return Term_Array
is
Names : constant Nametag_Array (1 .. Count) := (others => +"");
begin
return This.Fresh (Names);
end Fresh;
function Fresh
(This : in out World'Class;
Names : in Nametag_Array)
return Term_Array is
begin
return Terms : Term_Array (1 .. Names'Length) do
for Index in Terms'Range loop
Terms (Index) := This.Fresh (Names (Names'First + Index - 1));
end loop;
end return;
end Fresh;
-- Unification --
function Unify
(This : in World;
Left : in Term'Class;
Right : in Element_Type)
return World is
begin
return This.Unify (Left, T (Right));
end Unify;
procedure Unify
(This : in out World;
Left : in Term'Class;
Right : in Element_Type) is
begin
This := This.Unify (Left, T (Right));
end Unify;
function Unify
(This : in World;
Left, Right : in Term'Class)
return World is
begin
return Result : constant World :=
(Possibles => State_Vectors.Empty_Vector,
Engine =>
(Kind => Unify_Gen,
Uni_World => Hold (This),
Uni_Term1 => Term (Left),
Uni_Term2 => Term (Right)));
end Unify;
procedure Unify
(This : in out World;
Left, Right : in Term'Class) is
begin
This := This.Unify (Left, Right);
end Unify;
-- Combining / Disjunction --
function Disjunct
(Left, Right : in World)
return World is
begin
return Result : constant World :=
(Possibles => State_Vectors.Empty_Vector,
Engine =>
(Kind => Disjunct_Gen,
Dis_World1 => Hold (Left),
Dis_World2 => Hold (Right)));
end Disjunct;
procedure Disjunct
(This : in out World;
Right : in World) is
begin
This := Disjunct (This, Right);
end Disjunct;
function Disjunct
(Inputs : in World_Array)
return World is
begin
if Inputs'Length = 0 then
return Failed : constant World :=
(Possibles => State_Vectors.Empty_Vector,
Engine => (Kind => No_Gen));
elsif Inputs'Length = 1 then
return Inputs (Inputs'First);
else
return Result : constant World :=
(Possibles => State_Vectors.Empty_Vector,
Engine =>
(Kind => Disjunct_Gen,
Dis_World1 => Hold (Inputs (Inputs'First)),
Dis_World2 => Hold (Disjunct (Inputs (Inputs'First + 1 .. Inputs'Last)))));
end if;
end Disjunct;
procedure Disjunct
(This : in out World;
Inputs : in World_Array) is
begin
This := Disjunct (This & Inputs);
end Disjunct;
-- Lazy Sequencing / Conjunction --
function Conjunct
(This : in World;
Func : in Conjunct_Zero_Func)
return World is
begin
return Result : constant World :=
(Possibles => State_Vectors.Empty_Vector,
Engine =>
(Kind => Conjunct_Zero_Gen,
ConZ_World => Hold (This),
ConZ_Func => Func));
end Conjunct;
procedure Conjunct
(This : in out World;
Func : in Conjunct_Zero_Func) is
begin
This := This.Conjunct (Func);
end Conjunct;
function Conjunct
(This : in World;
Func : in Conjunct_One_Func;
Input : in Term'Class)
return World is
begin
return Result : constant World :=
(Possibles => State_Vectors.Empty_Vector,
Engine =>
(Kind => Conjunct_One_Gen,
ConO_World => Hold (This),
ConO_Func => Func,
ConO_Input => Term (Input)));
end Conjunct;
procedure Conjunct
(This : in out World;
Func : in Conjunct_One_Func;
Input : in Term'Class) is
begin
This := This.Conjunct (Func, Input);
end Conjunct;
function Conjunct
(This : in World;
Func : in Conjunct_Many_Func;
Inputs : in Term_Array)
return World is
begin
return Result : constant World :=
(Possibles => State_Vectors.Empty_Vector,
Engine =>
(Kind => Conjunct_Many_Gen,
ConM_World => Hold (This),
ConM_Func => Func,
ConM_Inputs => Term_Array_Holders.To_Holder (Inputs)));
end Conjunct;
procedure Conjunct
(This : in out World;
Func : in Conjunct_Many_Func;
Inputs : in Term_Array) is
begin
This := This.Conjunct (Func, Inputs);
end Conjunct;
-------------------------
-- Auxiliary Helpers --
-------------------------
-- Infinite State Loops --
function Recurse
(This : in World)
return World is
begin
return Result : constant World :=
(Possibles => State_Vectors.Empty_Vector,
Engine =>
(Kind => Recurse_Gen,
Rec_World => Hold (This),
Rec_Index => 1));
end Recurse;
procedure Recurse
(This : in out World) is
begin
This := This.Recurse;
end Recurse;
-- Forced Evaluation --
function Take
(This : in out World;
Count : in Positive)
return State_Array is
begin
This.Force (Count);
return Result : State_Array (1 .. Integer'Min (Count, This.Possibles.Last_Index)) do
for Index in Result'Range loop
Result (Index) := This.Possibles.Element (Index);
end loop;
end return;
end Take;
function Take_First
(This : in out World)
return State is
begin
This.Force (1);
if This.Possibles.Is_Empty then
return Empty_State;
else
return This.Possibles.First_Element;
end if;
end Take_First;
procedure Force
(This : in out World;
Count : in Positive) is
begin
This.Roll_Until (Count);
end Force;
procedure Force_All
(This : in out World) is
begin
while This.Engine.Kind /= No_Gen loop
This.Rollover;
end loop;
end Force_All;
function Failed
(This : in out World)
return Boolean is
begin
return not This.Has_State (1);
end Failed;
--------------------------
-- miniKanren Prelude --
--------------------------
-- caro --
function Head
(This : in World;
Inputs : in Term_Array)
return World
is
List_Term : Term renames Inputs (1);
Head_Term : Term renames Inputs (2);
begin
return Result : World := This do
Result.Unify (T (Head_Term, Result.Fresh), List_Term);
end return;
end Head;
procedure Head
(This : in out World;
Inputs : in Term_Array) is
begin
This := This.Head (Inputs);
end Head;
-- cdro --
function Tail
(This : in World;
Inputs : in Term_Array)
return World
is
List_Term : Term renames Inputs (1);
Tail_Term : Term renames Inputs (2);
begin
return Result : World := This do
Result.Unify (T (Result.Fresh, Tail_Term), List_Term);
end return;
end Tail;
procedure Tail
(This : in out World;
Inputs : in Term_Array) is
begin
This := This.Tail (Inputs);
end Tail;
-- conso --
function Cons
(This : in World;
Inputs : in Term_Array)
return World
is
Head_Term : Term renames Inputs (1);
Tail_Term : Term renames Inputs (2);
List_Term : Term renames Inputs (3);
begin
return Result : World := This do
Result.Unify (T (Head_Term, Tail_Term), List_Term);
end return;
end Cons;
procedure Cons
(This : in out World;
Inputs : in Term_Array) is
begin
This := This.Cons (Inputs);
end Cons;
-- nullo --
function Nil
(This : in World;
Nil_Term : in Term'Class)
return World is
begin
return Result : World := This do
Result.Unify (Empty_Term, Nil_Term);
end return;
end Nil;
procedure Nil
(This : in out World;
Nil_Term : in Term'Class) is
begin
This := This.Nil (Nil_Term);
end Nil;
-- pairo --
function Pair
(This : in World;
Pair_Term : in Term'Class)
return World is
begin
return Result : World := This do
Result.Cons (Result.Fresh & Result.Fresh & Term (Pair_Term));
end return;
end Pair;
procedure Pair
(This : in out World;
Pair_Term : in Term'Class) is
begin
This := This.Pair (Pair_Term);
end Pair;
-- listo --
function Linked_List
(This : in World;
List_Term : in Term'Class)
return World
is
One, Two : World := This;
Ref_Term : constant Term := Two.Fresh;
begin
One.Nil (List_Term);
Two.Pair (List_Term);
Two.Tail (Term (List_Term) & Ref_Term);
Two.Conjunct (Linked_List'Access, Ref_Term);
return Disjunct (One, Two);
end Linked_List;
procedure Linked_List
(This : in out World;
List_Term : in Term'Class) is
begin
This := This.Linked_List (List_Term);
end Linked_List;
-- membero --
function Member
(This : in World;
Inputs : in Term_Array)
return World
is
Item_Term : Term renames Inputs (1);
List_Term : Term renames Inputs (2);
One, Two : World := This;
Ref_Term : constant Term := Two.Fresh;
begin
One.Head (List_Term & Item_Term);
Two.Tail (List_Term & Ref_Term);
Two.Conjunct (Member'Access, Item_Term & Ref_Term);
return Disjunct (One, Two);
end Member;
procedure Member
(This : in out World;
Inputs : in Term_Array) is
begin
This := This.Member (Inputs);
end Member;
-- rembero --
function Remove
(This : in World;
Inputs : in Term_Array)
return World
is
Item_Term : Term renames Inputs (1);
List_Term : Term renames Inputs (2);
Out_Term : Term renames Inputs (3);
One, Two : World := This;
Left : constant Term := Two.Fresh;
Right : constant Term := Two.Fresh;
Rest : constant Term := Two.Fresh;
begin
One.Head (List_Term & Item_Term);
One.Tail (List_Term & Out_Term);
Two.Cons (Left & Right & List_Term);
Two.Conjunct (Remove'Access, Item_Term & Right & Rest);
Two.Cons (Left & Rest & Out_Term);
return Disjunct (One, Two);
end Remove;
procedure Remove
(This : in out World;
Inputs : in Term_Array) is
begin
This := This.Remove (Inputs);
end Remove;
-- appendo --
function Append
(This : in World;
Inputs : in Term_Array)
return World
is
List_Term : Term renames Inputs (1);
Item_Term : Term renames Inputs (2);
Out_Term : Term renames Inputs (3);
One, Two : World := This;
Left : constant Term := Two.Fresh;
Right : constant Term := Two.Fresh;
Rest : constant Term := Two.Fresh;
begin
One.Nil (List_Term);
One.Unify (Item_Term, Out_Term);
Two.Cons (Left & Right & List_Term);
Two.Cons (Left & Rest & Out_Term);
Two.Conjunct (Append'Access, Right & Item_Term & Rest);
return Disjunct (One, Two);
end Append;
procedure Append
(This : in out World;
Inputs : in Term_Array) is
begin
This := This.Append (Inputs);
end Append;
end Kompsos;
|