summaryrefslogtreecommitdiff
path: root/src/kompsos.adb
blob: 5997ddfd041a85742626983a7a46163c92c22e04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424


--  Programmed by Jedidiah Barber
--  Licensed under the Sunset License v1.0

--  See license.txt for further details


with

    Ada.Unchecked_Deallocation;


package body Kompsos is


    ------------------------------
    --  Controlled Subprograms  --
    ------------------------------

    procedure Free is new Ada.Unchecked_Deallocation (Term_Component, Term_Component_Access);


    procedure Initialize
           (This : in out Term) is
    begin
        --  For some reason, under some circumstances this is needed to ensure
        --  the access value is actually null. Not sure why.
        --  Seems to occur when constructing arrays with the & operator?
        This.Actual := null;
    end Initialize;


    procedure Adjust
           (This : in out Term) is
    begin
        if This.Actual /= null then
            This.Actual.Count := This.Actual.Count + 1;
        end if;
    end Adjust;


    procedure Finalize
           (This : in out Term) is
    begin
        if This.Actual /= null then
            This.Actual.Count := This.Actual.Count - 1;
            if This.Actual.Count = 0 then
                Free (This.Actual);
            end if;
        end if;
    end Finalize;




    -------------
    --  Terms  --
    -------------

    function "="
           (Left, Right : in Term)
        return Boolean is
    begin
        if Left.Actual = null and Right.Actual = null then
            return True;
        end if;
        if Left.Actual = null or Right.Actual = null then
            return False;
        end if;
        if Left.Actual.Kind /= Right.Actual.Kind then
            return False;
        end if;
        case Left.Actual.Kind is
        when Atom_Term =>
            return Left.Actual.Value = Right.Actual.Value;
        when Var_Term =>
            return Left.Actual.Refer = Right.Actual.Refer;
        when Pair_Term =>
            return Left.Actual.Left = Right.Actual.Left and Left.Actual.Right = Right.Actual.Right;
        end case;
    end "=";


    function T
           (Item : in Element_Type)
        return Term is
    begin
        return My_Term : Term do
            My_Term.Actual := new Term_Component'(
                Kind  => Atom_Term,
                Count => 1,
                Value => Item);
        end return;
    end T;


    function T
           (Item : in Variable)
        return Term is
    begin
        return My_Term : Term do
            My_Term.Actual := new Term_Component'(
                Kind  => Var_Term,
                Count => 1,
                Refer => Item);
        end return;
    end T;


    function T
           (Items : in Term_Array)
        return Term is
    begin
        if Items'Length = 0 then
            return My_Term : Term;
        end if;
        return My_Term : Term do
            My_Term.Actual := new Term_Component'(
                Kind  => Pair_Term,
                Count => 1,
                Left  => Items (Items'First),
                Right => T (Items (Items'First + 1 .. Items'Last)));
        end return;
    end T;




    ---------------------
    --  Unify Helpers  --
    ---------------------

    function Has_Var
           (This : in State;
            Var  : in Variable)
        return Boolean
    is
        use type SU.Unbounded_String;
    begin
        return This.LVars.Contains (Var.Ident) and then
            This.LVars.Constant_Reference (Var.Ident) = Var.Name;
    end Has_Var;


    function Fully_Contains
           (This : in State;
            Item : in Term'Class)
        return Boolean is
    begin
        if Item.Actual = null then
            return True;
        end if;
        case Item.Actual.Kind is
        when Atom_Term =>
            return True;
        when Var_Term =>
            return Has_Var (This, Item.Actual.Refer);
        when Pair_Term =>
            return Fully_Contains (This, Item.Actual.Left) and then
                Fully_Contains (This, Item.Actual.Right);
        end case;
    end Fully_Contains;


    function Walk
           (This : in State;
            Item : in Term'Class)
        return Term'Class is
    begin
        if This.Subst.Contains (Item.Actual.Refer.Ident) then
            return Walk (This, This.Subst.Constant_Reference (Item.Actual.Refer.Ident));
        else
            return Item;
        end if;
    end Walk;


    function Do_Unify
           (Potential   : in     State;
            Left, Right : in     Term'Class;
            Extended    :    out State)
        return Boolean
    is
        Real_Left  : Term'Class := Left;
        Real_Right : Term'Class := Right;
    begin
        --  Resolve Variable substitution
        if Left.Actual /= null and then Left.Actual.Kind = Var_Term then
            if Has_Var (Potential, Left.Actual.Refer) then
                Real_Left := Walk (Potential, Left);
            else
                return False;
            end if;
        end if;
        if Right.Actual /= null and then Right.Actual.Kind = Var_Term then
            if Has_Var (Potential, Right.Actual.Refer) then
                Real_Right := Walk (Potential, Right);
            else
                return False;
            end if;
        end if;

        --  Check for null Terms
        if Real_Left.Actual = null and Real_Right.Actual = null then
            Extended := Potential;
            return True;
        end if;
        if Real_Left.Actual = null or Real_Right.Actual = null then
            return False;
        end if;

        --  Unify equal Variable Terms
        if  Real_Left.Actual.Kind = Var_Term and then
            Real_Right.Actual.Kind = Var_Term and then
            Real_Left = Real_Right
        then
            Extended := Potential;
            return True;
        end if;

        --  Unify equal Atom Terms
        if  Real_Left.Actual.Kind = Atom_Term and then
            Real_Right.Actual.Kind = Atom_Term and then
            Real_Left = Real_Right
        then
            Extended := Potential;
            return True;
        end if;

        --  Unify Pair Terms by unifying each corresponding part
        if  Real_Left.Actual.Kind = Pair_Term and then
            Real_Right.Actual.Kind = Pair_Term and then
            Fully_Contains (Potential, Real_Left) and then
            Fully_Contains (Potential, Real_Right)
        then
            declare
                Middle : State;
            begin
                return
                    Do_Unify (Potential, Real_Left.Actual.Left, Real_Right.Actual.Left, Middle)
                    and then
                    Do_Unify (Middle, Real_Left.Actual.Right, Real_Right.Actual.Right, Extended);
            end;
        end if;

        --  Unify Variable and other Terms by introducing a new substitution
        if Real_Left.Actual.Kind = Var_Term then
            if  Real_Right.Actual.Kind = Pair_Term and then
                not Fully_Contains (Potential, Real_Right)
            then
                return False;
            end if;
            Extended := Potential;
            Extended.Subst.Insert (Real_Left.Actual.Refer.Ident, Term (Real_Right));
            return True;
        end if;
        if Real_Right.Actual.Kind = Var_Term then
            if  Real_Left.Actual.Kind = Pair_Term and then
                not Fully_Contains (Potential, Real_Left)
            then
                return False;
            end if;
            Extended := Potential;
            Extended.Subst.Insert (Real_Right.Actual.Refer.Ident, Term (Real_Left));
            return True;
        end if;

        --  Not sure how things get here, but if all else fails
        return False;
    end Do_Unify;




    -------------
    --  Fresh  --
    -------------

    function Fresh
           (This : in out World)
        return Variable is
    begin
        return This.Fresh (+"");
    end Fresh;


    function Fresh
           (This : in out World;
            Name : in     String)
        return Variable is
    begin
        return This.Fresh (+Name);
    end Fresh;


    function Fresh
           (This : in out World;
            Name : in     Ada.Strings.Unbounded.Unbounded_String)
        return Variable is
    begin
        return My_Var : constant Variable := (Ident => This.Next_Ident, Name => Name) do
            This.Next_Ident := This.Next_Ident + 1;
            for Potential of This.Possibles loop
                Potential.LVars.Insert (My_Var.Ident, My_Var.Name);
            end loop;
        end return;
    end Fresh;




    -------------
    --  Unify  --
    -------------

    function Unify
           (This  : in World;
            Left  : in Variable;
            Right : in Element_Type)
        return World is
    begin
        return This.Unify (T (Left), T (Right));
    end Unify;


    procedure Unify
           (This  : in out World;
            Left  : in     Variable;
            Right : in     Element_Type) is
    begin
        This := This.Unify (T (Left), T (Right));
    end Unify;


    function Unify
           (This        : in World;
            Left, Right : in Variable)
        return World is
    begin
        return This.Unify (T (Left), T (Right));
    end Unify;


    procedure Unify
           (This        : in out World;
            Left, Right : in     Variable) is
    begin
        This := This.Unify (T (Left), T (Right));
    end Unify;


    function Unify
           (This  : in World;
            Left  : in Variable;
            Right : in Term'Class)
        return World is
    begin
        return This.Unify (T (Left), Right);
    end Unify;


    procedure Unify
           (This  : in out World;
            Left  : in     Variable;
            Right : in     Term'Class) is
    begin
        This := This.Unify (T (Left), Right);
    end Unify;


    function Unify
           (This        : in World;
            Left, Right : in Term'Class)
        return World
    is
        Result : World;
        Extended : State;
    begin
        Result.Next_Ident := This.Next_Ident;
        for Potential of This.Possibles loop
            if Do_Unify (Potential, Left, Right, Extended) then
                Result.Possibles.Append (Extended);
            end if;
        end loop;
        return Result;
    end Unify;


    procedure Unify
           (This        : in out World;
            Left, Right : in     Term'Class) is
    begin
        This := This.Unify (Left, Right);
    end Unify;




    ----------------
    --  Disjunct  --
    ----------------

    function Disjunct
           (Left, Right : in World)
        return World is
    begin
        return My_World : constant World :=
           (Possibles  => Left.Possibles & Right.Possibles,
            Next_Ident => ID_Number'Max (Left.Next_Ident, Right.Next_Ident));
    end Disjunct;


    procedure Disjunct
           (This  : in out World;
            Right : in     World) is
    begin
        This := Disjunct (This, Right);
    end Disjunct;


end Kompsos;