1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
|
with
Ada.Unchecked_Deallocation;
package body Packrat.Graphs is
procedure Free_Element_Array is new Ada.Unchecked_Deallocation
(Element_Array, Element_Array_Access);
function "<"
(Left, Right : in Choice_Down)
return Boolean is
begin
return Left.From < Right.From or else
(Left.From = Right.From and Left.Choice < Right.Choice);
end "<";
procedure Adjust
(This : in out Elem_Wrapper)
is
New_Array : Element_Array_Access;
begin
if This.Data /= null then
New_Array := new Element_Array (This.Data'First .. This.Data'Last);
New_Array.all := This.Data.all;
This.Data := New_Array;
end if;
end Adjust;
procedure Finalize
(This : in out Elem_Wrapper) is
begin
if This.Data /= null then
Free_Element_Array (This.Data);
end if;
end Finalize;
function Wrap
(Data : in Element_Array)
return Elem_Wrapper
is
New_Array : Element_Array_Access :=
new Element_Array (Data'First .. Data'Last);
begin
New_Array.all := Data;
return (Ada.Finalization.Controlled with Data => New_Array);
end Wrap;
function Leaf
(New_Item : in Element_Array;
Start : in Positive;
Finish : in Natural)
return Node is
begin
return This : Node do
This.Kind := Leaf_Node;
This.Content := Wrap (New_Item);
This.Start := Start;
This.Finish := Finish;
end return;
end Leaf;
function Branch
(Label : in Label_Enum;
Start : in Positive;
Finish : in Natural)
return Node is
begin
return This : Node do
This.Kind := Branch_Node;
This.Ident := Label;
This.Start := Start;
This.Finish := Finish;
end return;
end Branch;
function Is_Nothing
(This : in Node)
return Boolean is
begin
return This.Kind = Null_Node;
end Is_Nothing;
function Is_Leaf
(This : in Node)
return Boolean is
begin
return This.Kind = Leaf_Node;
end Is_Leaf;
function Is_Branch
(This : in Node)
return Boolean is
begin
return This.Kind = Branch_Node;
end Is_Branch;
function Label
(This : in Node)
return Label_Enum is
begin
return This.Ident;
end Label;
function Elements
(This : in Node)
return Element_Array is
begin
return This.Content.Data.all;
end Elements;
function Start
(This : in Node)
return Positive is
begin
return This.Start;
end Start;
function Finish
(This : in Node)
return Natural is
begin
return This.Finish;
end Finish;
function Is_Nothing
(Position : in Cursor)
return Boolean is
begin
return Position.My_Graph = null or else
Position.Index = 0 or else
Position.Index > Position.My_Graph.all.Node_List.Last_Index or else
Position.My_Graph.all.Node_List.Element (Position.Index).Kind = Null_Node;
end Is_Nothing;
function Depth
(Position : in Cursor)
return Natural is
begin
return Natural (Position.Track.Length);
end Depth;
function Is_Node
(Position : in Cursor)
return Boolean is
begin
return not Is_Nothing (Position);
end Is_Node;
function Is_Root
(Position : in Cursor)
return Boolean is
begin
return Position.My_Graph /= null and then
Position.My_Graph.all.Root_List.Contains (Position.Index) and then
Depth (Position) = 0;
end Is_Root;
function Is_Branch
(Position : in Cursor)
return Boolean is
begin
return Position.My_Graph /= null and then
Position.Index /= 0 and then
Position.Index <= Position.My_Graph.all.Node_List.Last_Index and then
Position.My_Graph.all.Node_List.Element (Position.Index).Kind = Branch_Node;
end Is_Branch;
function Is_Leaf
(Position : in Cursor)
return Boolean is
begin
return Position.My_Graph /= null and then
Position.Index /= 0 and then
Position.Index <= Position.My_Graph.all.Node_List.Last_Index and then
Position.My_Graph.all.Node_List.Element (Position.Index).Kind = Leaf_Node;
end Is_Leaf;
function Label
(Position : in Cursor)
return Label_Enum is
begin
return Position.My_Graph.all.Node_List.Element (Position.Index).Ident;
end Label;
function Elements
(Position : in Cursor)
return Element_Array is
begin
return Position.My_Graph.all.Node_List.Element (Position.Index).Content.Data.all;
end Elements;
function Start
(Position : in Cursor)
return Positive is
begin
return Position.My_Graph.all.Node_List.Element (Position.Index).Start;
end Start;
function Finish
(Position : in Cursor)
return Natural is
begin
return Position.My_Graph.all.Node_List.Element (Position.Index).Finish;
end Finish;
function Choices
(My_Graph : in Graph;
My_Index : in Node_Index)
return Natural is
begin
if not My_Graph.Choices.Contains (My_Index) then
return 0;
else
return My_Graph.Choices.Element (My_Index);
end if;
end Choices;
function Choices
(Position : in Cursor)
return Natural is
begin
if not Is_Branch (Position) then
return 0;
else
return Choices (Position.My_Graph.all, Position.Index);
end if;
end Choices;
function Parent
(Position : in Cursor)
return Cursor is
begin
return Result : Cursor do
Result.My_Graph := Position.My_Graph;
Result.Track := Position.Track;
if Natural (Position.Track.Length) = 0 then
Result.Index := 0;
else
Result.Index := Position.Track.Last_Element.From;
Result.Track.Delete_Last;
end if;
end return;
end Parent;
function Child_Count
(Position : in Cursor;
Choice : in Positive)
return Natural is
begin
return Natural (Position.My_Graph.all.Down_Edges.Element ((Position.Index, Choice)).Length);
end Child_Count;
function Child_Count
(Position : in Cursor)
return Natural
is
Choice_Count : Natural := Choices (Position);
begin
if Choice_Count = 0 then
return 0;
else
return Natural (Position.My_Graph.all.Down_Edges.Element
((Position.Index, Choice_Count)).Length);
end if;
end Child_Count;
function All_Child_Count
(Position : in Cursor)
return Natural
is
Result : Natural := 0;
begin
for C in Integer range 1 .. Choices (Position) loop
Result := Result + Child_Count (Position, C);
end loop;
return Result;
end All_Child_Count;
function First_Child
(Position : in Cursor;
Choice : in Positive)
return Cursor is
begin
return Result : Cursor do
Result.My_Graph := Position.My_Graph;
Result.Index := Position.My_Graph.all.Down_Edges.Element
((Position.Index, Choice)).First_Element;
Result.Track := Position.Track;
Result.Track.Append ((Position.Index, Choice));
end return;
end First_Child;
function Last_Child
(Position : in Cursor;
Choice : in Positive)
return Cursor is
begin
return Result : Cursor do
Result.My_Graph := Position.My_Graph;
Result.Index := Position.My_Graph.all.Down_Edges.Element
((Position.Index, Choice)).Last_Element;
Result.Track := Position.Track;
Result.Track.Append ((Position.Index, Choice));
end return;
end Last_Child;
function First_Child
(Position : in Cursor)
return Cursor
is
Choice : Natural := Choices (Position);
begin
return Result : Cursor do
Result.My_Graph := Position.My_Graph;
if Choice = 0 or Result.My_Graph = null then
Result.Index := 0;
else
Result.Index := Position.My_Graph.all.Down_Edges.Element
((Position.Index, Choice)).First_Element;
end if;
Result.Track := Position.Track;
Result.Track.Append ((Position.Index, Choice));
end return;
end First_Child;
function Last_Child
(Position : in Cursor)
return Cursor
is
Choice : Natural := Choices (Position);
begin
return Result : Cursor do
Result.My_Graph := Position.My_Graph;
if Choice = 0 or Result.My_Graph = null then
Result.Index := 0;
else
Result.Index := Position.My_Graph.all.Down_Edges.Element
((Position.Index, Choice)).Last_Element;
end if;
Result.Track := Position.Track;
Result.Track.Append ((Position.Index, Choice));
end return;
end Last_Child;
function Next_Sibling
(Position : in Cursor)
return Cursor
is
Parent_Index : Extended_Node_Index;
Choice : Natural;
Sibling : Index_Vectors.Cursor;
begin
if Depth (Position) = 0 then
Parent_Index := 0;
Choice := 0;
else
Parent_Index := Position.Track.Last_Element.From;
Choice := Position.Track.Last_Element.Choice;
end if;
return Result : Cursor do
Result.My_Graph := Position.My_Graph;
if Choice = 0 or Parent_Index = 0 or Result.My_Graph = null or Position.Index = 0 then
Result.Index := 0;
else
Sibling := Result.My_Graph.all.Down_Edges.Element
((Parent_Index, Choice)).Find (Position.Index);
Index_Vectors.Next (Sibling);
if Index_Vectors.Has_Element (Sibling) then
Result.Index := Index_Vectors.Element (Sibling);
else
Result.Index := 0;
end if;
end if;
Result.Track := Position.Track;
end return;
end Next_Sibling;
function Prev_Sibling
(Position : in Cursor)
return Cursor
is
Parent_Index : Extended_Node_Index;
Choice : Natural;
Sibling : Index_Vectors.Cursor;
begin
if Depth (Position) = 0 then
Parent_Index := 0;
Choice := 0;
else
Parent_Index := Position.Track.Last_Element.From;
Choice := Position.Track.Last_Element.Choice;
end if;
return Result : Cursor do
Result.My_Graph := Position.My_Graph;
if Choice = 0 or Parent_Index = 0 or Result.My_Graph = null or Position.Index = 0 then
Result.Index := 0;
else
Sibling := Result.My_Graph.all.Down_Edges.Element
((Parent_Index, Choice)).Find (Position.Index);
Index_Vectors.Previous (Sibling);
if Index_Vectors.Has_Element (Sibling) then
Result.Index := Index_Vectors.Element (Sibling);
else
Result.Index := 0;
end if;
end if;
Result.Track := Position.Track;
end return;
end Prev_Sibling;
procedure Delete_Loose_Subgraph
(Container : in out Graph;
Index : in Node_Index)
is
use type Ada.Containers.Count_Type;
Number_Choices : Natural;
begin
if Container.Up_Edges.Contains (Index) and then
Container.Up_Edges.Reference (Index).Length > 0
then
-- If this subgraph is still connected to the rest of the graph,
-- then we do nothing.
return;
end if;
if Container.Choices.Contains (Index) then
Number_Choices := Container.Choices.Element (Index);
else
Number_Choices := 0;
end if;
for C in reverse Integer range 1 .. Number_Choices loop
declare
Edges : Edge_Down_Maps.Reference_Type :=
Container.Down_Edges.Reference ((Index, C));
begin
for I in reverse Integer range 1 .. Edges.Last_Index loop
declare
Elem : Node_Index := Edges.Element.Element (I);
begin
Container.Delete_Up_Edge (Elem, Index);
Container.Delete_Loose_Subgraph (Elem);
end;
end loop;
end;
Container.Delete_Down_Edges (Index, C);
end loop;
Container.Node_List.Reference (Index).Kind := Null_Node;
if Index < Container.Add_Place then
Container.Add_Place := Index;
end if;
while Container.Node_List.Length > 0 and then
Container.Node_List.Last_Element.Kind = Null_Node
loop
Container.Node_List.Delete_Last;
end loop;
if Container.Root_List.Contains (Index) then
Container.Root_List.Delete (Container.Root_List.Reverse_Find_Index (Index));
end if;
end Delete_Loose_Subgraph;
procedure Delete_Up_Edge
(Container : in out Graph;
Current, Parent : in Node_Index)
is
Index_List : Edge_Up_Maps.Reference_Type :=
Container.Up_Edges.Reference (Current);
Place : Natural := Index_List.Reverse_Find_Index (Parent);
begin
Index_List.Delete (Place);
if Index_List.Is_Empty then
Container.Up_Edges.Delete (Current);
end if;
end Delete_Up_Edge;
procedure Delete_Down_Edges
(Container : in out Graph;
From : in Node_Index;
Choice : in Positive)
is
Number_Choices : Choice_Maps.Reference_Type := Container.Choices.Reference (From);
begin
for C in Integer range Choice + 1 .. Number_Choices loop
Container.Down_Edges.Replace
((From, C - 1),
Container.Down_Edges.Element ((From, C)));
end loop;
Container.Down_Edges.Delete ((From, Number_Choices));
Number_Choices := Number_Choices - 1;
if Number_Choices < 1 then
Container.Choices.Delete (From);
end if;
end Delete_Down_Edges;
procedure Delete_Children
(Position : in out Cursor;
Choice : in Positive)
is
use type Ada.Containers.Count_Type;
Index_List : Edge_Down_Maps.Reference_Type :=
Position.My_Graph.all.Down_Edges.Reference ((Position.Index, Choice));
begin
for I in reverse Integer range Index_List.First_Index .. Index_List.Last_Index loop
declare
Elem : Node_Index := Index_List.Element.Element (I);
begin
Position.My_Graph.all.Delete_Up_Edge (Elem, Position.Index);
Position.My_Graph.all.Delete_Loose_Subgraph (Elem);
end;
end loop;
Position.My_Graph.all.Delete_Down_Edges (Position.Index, Choice);
while Position.My_Graph.all.Node_List.Length > 0 and then
Position.My_Graph.all.Node_List.Last_Element.Kind = Null_Node
loop
Position.My_Graph.all.Node_List.Delete_Last;
end loop;
end Delete_Children;
procedure Delete_Children
(Position : in out Cursor)
is
Choice : Natural := Choices (Position);
begin
if Choice > 0 then
Delete_Children (Position, Choice);
end if;
end Delete_Children;
procedure Delete_All_Children
(Position : in out Cursor) is
begin
for I in reverse Integer range 1 .. Choices (Position) loop
Delete_Children (Position, I);
end loop;
end Delete_All_Children;
function Equal_Subgraph
(Left_Graph, Right_Graph : in Graph;
Left_Index, Right_Index : in Node_Index)
return Boolean
is
use type Ada.Containers.Count_Type;
begin
if Left_Graph.Node_List.Element (Left_Index) /=
Right_Graph.Node_List.Element (Right_Index)
then
return False;
end if;
if Choices (Left_Graph, Left_Index) /=
Choices (Right_Graph, Right_Index)
then
return False;
end if;
for C in Integer range 1 .. Choices (Left_Graph, Left_Index) loop
declare
Left_List : Edge_Down_Maps.Constant_Reference_Type :=
Left_Graph.Down_Edges.Constant_Reference ((Left_Index, C));
Right_List : Edge_Down_Maps.Constant_Reference_Type :=
Right_Graph.Down_Edges.Constant_Reference ((Right_Index, C));
begin
if Left_List.Length /= Right_List.Length then
return False;
end if;
for I in Integer range 1 .. Left_List.Last_Index loop
if not Equal_Subgraph
(Left_Graph,
Right_Graph,
Left_List.Element.Element (I),
Right_List.Element.Element (I))
then
return False;
end if;
end loop;
end;
end loop;
return True;
end Equal_Subgraph;
function Equal_Subgraph
(Left, Right : in Cursor)
return Boolean is
begin
return Equal_Subgraph
(Left.My_Graph.all,
Right.My_Graph.all,
Left.Index,
Right.Index);
end Equal_Subgraph;
function Node_Count
(Container : in Graph;
Root_List : in Index_Vectors.Vector)
return Natural
is
Result : Natural := 0;
Current_Vector : Index_Vectors.Vector := Root_List;
New_Vector : Index_Vectors.Vector := Index_Vectors.Empty_Vector;
begin
while Natural (Current_Vector.Length) > 0 loop
Result := Result + Natural (Current_Vector.Length);
for N of Current_Vector loop
if Is_Branch (Container.Node_List.Element (N)) and
Container.Choices.Contains (N)
then
for C in Integer range 1 .. Container.Choices.Element (N) loop
New_Vector.Append (Container.Down_Edges.Element ((N, C)));
end loop;
end if;
end loop;
Current_Vector := New_Vector;
New_Vector.Clear;
end loop;
return Result;
end Node_Count;
function Subgraph_Node_Count
(Position : in Cursor)
return Natural
is
use type Index_Vectors.Vector;
begin
return Node_Count
(Position.My_Graph.all,
Index_Vectors.Empty_Vector & Position.Index);
end Subgraph_Node_Count;
function Find_In_Subgraph
(Position : in Cursor;
Item : in Element_Array)
return Cursor is
begin
return This : Cursor;
end Find_In_Subgraph;
function Contains
(Container : in Graph;
Position : in Cursor)
return Boolean is
begin
return Position.My_Graph = Container'Unrestricted_Access and then
Position.Index < Container.Node_List.Last_Index and then
Position.Index > 0 and then
Container.Node_List.Element (Position.Index).Kind /= Null_Node;
end Contains;
function Singleton
(Input : in Node)
return Graph is
begin
return Result : Graph do
Result.Root_List := Index_Vectors.Empty_Vector;
Result.Root_List.Append (1);
Result.Node_List := Node_Vectors.Empty_Vector;
Result.Node_List.Append (Input);
Result.Add_Place := 2;
Result.Choices := Choice_Maps.Empty_Map;
Result.Down_Edges := Edge_Down_Maps.Empty_Map;
Result.Up_Edges := Edge_Up_Maps.Empty_Map;
end return;
end Singleton;
function Node_At
(Container : in Graph;
Position : in Cursor)
return Node_Reference is
begin
return (Data => No_Node'Unrestricted_Access);
end Node_At;
function Is_Empty
(Container : in Graph)
return Boolean is
begin
return Container.Root_List.Is_Empty;
end Is_Empty;
function Is_Ambiguous
(Container : in Graph)
return Boolean is
begin
if Natural (Container.Root_List.Length) > 1 then
return True;
end if;
for N in Node_Index range 1 .. Container.Node_List.Last_Index loop
if Container.Node_List.Element (N).Kind = Branch_Node and then
Container.Choices.Contains (N) and then
Container.Choices.Element (N) > 1
then
return True;
end if;
end loop;
return False;
end Is_Ambiguous;
function Node_Count
(Container : in Graph)
return Natural is
begin
return Node_Count (Container, Container.Root_List);
end Node_Count;
function Root_Count
(Container : in Graph)
return Natural is
begin
return Natural (Container.Root_List.Length);
end Root_Count;
function Root
(Container : in Graph;
Index : in Positive)
return Cursor is
begin
return Result : Cursor do
Result.My_Graph := Container'Unrestricted_Access;
Result.Index := Container.Root_List.Element (Index);
Result.Track := Choice_Down_Vectors.Empty_Vector;
end return;
end Root;
procedure Add_Nodes
(Container : in out Graph;
Addition : in Node_Vectors.Vector;
Mapping : out Index_Maps.Map) is
begin
Mapping := Index_Maps.Empty_Map;
for C in Addition.Iterate loop
Mapping.Insert (Node_Vectors.To_Index (C), Container.Add_Place);
if Container.Add_Place > Container.Node_List.Last_Index then
Container.Node_List.Append (Node_Vectors.Element (C));
else
Container.Node_List.Replace_Element (Container.Add_Place, Node_Vectors.Element (C));
end if;
while Container.Add_Place <= Container.Node_List.Last_Index and then
not Is_Nothing (Container.Node_List.Element (Container.Add_Place))
loop
Container.Add_Place := Container.Add_Place + 1;
end loop;
end loop;
end Add_Nodes;
procedure Add_Edges
(Container : in out Graph;
Addition : in Graph;
Mapping : in Index_Maps.Map)
is
Targets : Index_Vectors.Vector := Index_Vectors.Empty_Vector;
begin
-- Up edges
for E in Addition.Up_Edges.Iterate loop
Targets.Clear;
for T of Edge_Up_Maps.Element (E) loop
Targets.Append (Mapping.Element (T));
end loop;
Container.Up_Edges.Insert
(Mapping.Element (Edge_Up_Maps.Key (E)), Targets);
end loop;
-- Down edges
for E in Addition.Down_Edges.Iterate loop
Targets.Clear;
for T of Edge_Down_Maps.Element (E) loop
Targets.Append (Mapping.Element (T));
end loop;
Container.Down_Edges.Insert
((Mapping.Element (Edge_Down_Maps.Key (E).From), Edge_Down_Maps.Key (E).Choice),
Targets);
end loop;
-- Choices
for C in Addition.Choices.Iterate loop
Container.Choices.Insert
(Mapping.Element (Choice_Maps.Key (C)), Choice_Maps.Element (C));
end loop;
end Add_Edges;
procedure Append
(Container : in out Graph;
Addition : in Graph)
is
Mapping : Index_Maps.Map;
begin
-- Add the nodes and edges from the addition to the graph,
-- making sure to handle the conversion of the index each node
-- is stored at. If index conversion wasn't required this bit would
-- be much simpler.
Add_Nodes (Container, Addition.Node_List, Mapping);
Add_Edges (Container, Addition, Mapping);
-- Append the root list of the addition to the graph
for R of Addition.Root_List loop
Container.Root_List.Append (Mapping.Element (R));
end loop;
end Append;
procedure Prepend
(Container : in out Graph;
Addition : in Graph)
is
Mapping : Index_Maps.Map;
Converted_Roots : Index_Vectors.Vector := Index_Vectors.Empty_Vector;
begin
-- Add the nodes and edges from the addition to the graph,
-- making sure to handle the conversion of the index each node
-- is stored at. If index conversion wasn't required this bit would
-- be much simpler.
Add_Nodes (Container, Addition.Node_List, Mapping);
Add_Edges (Container, Addition, Mapping);
-- Prepend the root list of the addition to the graph
for R of Addition.Root_List loop
Converted_Roots.Append (Mapping.Element (R));
end loop;
Container.Root_List.Prepend (Converted_Roots);
end Prepend;
procedure Attach_Choice
(Container : in out Graph;
Position : in Cursor;
Addition : in Graph) is
begin
null;
end Attach_Choice;
procedure Clear
(Container : in out Graph) is
begin
Container.Root_List.Clear;
Container.Node_List.Clear;
Container.Add_Place := 1;
Container.Choices.Clear;
Container.Down_Edges.Clear;
Container.Up_Edges.Clear;
end Clear;
procedure Delete_Position
(Container : in out Graph;
Position : in out Cursor)
is
use type Ada.Containers.Count_Type;
begin
if Position.Track.Length > 0 then
Delete_Up_Edge (Container, Position.Index, Position.Track.Last_Element.From);
declare
Last : Choice_Down :=
Position.Track.Last_Element;
Ref : Edge_Down_Maps.Reference_Type :=
Container.Down_Edges.Reference (Last);
Number_Choices : Choice_Maps.Reference_Type :=
Container.Choices.Reference (Last.From);
begin
Ref.Delete (Ref.Find_Index (Position.Index));
if Ref.Length = 0 then
for C in Integer range Last.Choice + 1 .. Number_Choices loop
Container.Down_Edges.Replace
((Last.From, C - 1),
Container.Down_Edges.Element ((Last.From, C)));
end loop;
Container.Down_Edges.Delete ((Last.From, Number_Choices));
Number_Choices := Number_Choices - 1;
if Number_Choices < 1 then
Container.Choices.Delete (Last.From);
end if;
end if;
end;
end if;
Delete_Loose_Subgraph (Container, Position.Index);
while Position.My_Graph.all.Node_List.Length > 0 and then
Position.My_Graph.all.Node_List.Last_Element.Kind = Null_Node
loop
Position.My_Graph.all.Node_List.Delete_Last;
end loop;
end Delete_Position;
function Find
(Container : in Graph;
Item : in Element_Array)
return Cursor is
begin
return This : Cursor;
end Find;
function Default_Choices
(Container : in Graph;
Position : in Cursor)
return Natural is
begin
if Is_Nothing (Position) then
return Container.Root_Count;
else
return Choices (Position);
end if;
end Default_Choices;
function Accept_All
(Position : in Cursor)
return Boolean is
begin
return not Is_Nothing (Position);
end Accept_All;
function Iterate
(Container : in Graph;
Start_At : in Cursor := No_Position;
Choose : in Choosing_Function := Default_Choices'Access;
Filter : in Filter_Function := Accept_All'Access)
return Graph_Iterators.Reversible_Iterator'Class is
begin
return This : Reversible_Iterator do
This.My_Graph := Container'Unrestricted_Access;
This.Start_Pos := Start_At;
This.Rule := Specific_Branch;
This.Choose_Func := Choose;
This.Filter_Func := Filter;
end return;
end Iterate;
function Iterate_All
(Container : in Graph;
Start_At : in Cursor := No_Position;
Filter : in Filter_Function := Accept_All'Access)
return Graph_Iterators.Reversible_Iterator'Class is
begin
return This : Reversible_Iterator do
This.My_Graph := Container'Unrestricted_Access;
This.Start_Pos := Start_At;
This.Rule := All_Nodes;
This.Choose_Func := null;
This.Filter_Func := Filter;
end return;
end Iterate_All;
function First
(Object : in Reversible_Iterator)
return Cursor is
begin
if Object.My_Graph = null or else Object.My_Graph.all.Is_Empty then
return No_Position;
elsif Is_Nothing (Object.Start_Pos) then
if Object.Rule = All_Nodes then
return Object.My_Graph.all.Root (1);
else
return Object.My_Graph.all.Root
(Object.Choose_Func (Object.My_Graph.all, No_Position));
end if;
else
return Object.Start_Pos;
end if;
end First;
function Next
(Object : in Reversible_Iterator;
Place : in Cursor)
return Cursor is
begin
if Object.My_Graph = null or else
Object.My_Graph.all.Is_Empty or else
Is_Nothing (Place)
then
return No_Position;
end if; -- elsif
return No_Position;
end Next;
function Last
(Object : in Reversible_Iterator)
return Cursor is
begin
return No_Position;
end Last;
function Previous
(Object : in Reversible_Iterator;
Place : in Cursor)
return Cursor is
begin
return No_Position;
end Previous;
end Packrat.Graphs;
|