summaryrefslogtreecommitdiff
path: root/project/templates/integral.html
diff options
context:
space:
mode:
Diffstat (limited to 'project/templates/integral.html')
-rw-r--r--project/templates/integral.html242
1 files changed, 242 insertions, 0 deletions
diff --git a/project/templates/integral.html b/project/templates/integral.html
new file mode 100644
index 0000000..0e5307b
--- /dev/null
+++ b/project/templates/integral.html
@@ -0,0 +1,242 @@
+
+{% extends "base.html" %}
+
+
+
+{% block title %}Area Under the Curve of a Complex Integral{% endblock %}
+
+
+
+{% block style %}
+ <link href="/css/integral.css" rel="stylesheet">
+{% endblock %}
+
+
+
+{% block content %}
+
+<h4>Area Under the Curve of a Complex Integral</h4>
+
+<p>Scripts used to generate graphs: <a href="/dld/integral_scripts.zip">Link</a></p>
+
+<h5>29/12/2018</h5>
+
+<p>A definite integral can be represented on the xy-plane as the signed area
+bounded by the curve of the function f(x), the x-axis, and the limits of
+integration a and b. But it's not immediately clear how this definition applies
+for complex valued functions.</p>
+
+<p>Consider the following example:</p>
+
+<div class="precontain"><div class="mathblock">
+ <math xmlns="http://www.w3.org/1998/Math/MathML">
+ <mrow>
+ <msubsup>
+ <mo>&int;</mo>
+ <mn>0</mn>
+ <mn>1</mn>
+ </msubsup>
+ <msup>
+ <mfenced>
+ <mn>-1</mn>
+ </mfenced>
+ <mi>x</mi>
+ </msup>
+ <mi>dx</mi>
+ </mrow>
+ </math>
+</div></div>
+
+<p>If the function is graphed on the xy-plane, the real valued outputs are sparse.
+Yet an elementary antiderivative exists and the definite integral is well defined.</p>
+
+<figure>
+ <img src="/img/minus_one_exp_x_real_values_only.png"
+ alt="Real values only plot of minus one raised to the x power"
+ height="400"
+ width="520">
+ <figcaption>Figure 1 - Real values only</figcaption>
+</figure>
+
+<p>In order to plot a meaningful graph that can be used to potentially calculate
+the integral as a signed area, some cues are taken from Philip Lloyd's work on
+<a href="https://phantomgraphs.weebly.com/" target="_blank">Phantom Graphs</a>.
+In that work, an additional z-axis is used to extend the x-axis into a complex
+xz-plane, allowing complex inputs to be graphed. For the function considered
+here, the z-axis is instead used to extend the y-axis into a complex yz-plane
+to allow graphing of complex outputs instead.</p>
+
+<p>Upon doing so, the following helical graph is obtained:</p>
+
+<figure>
+ <img src="/img/minus_one_exp_x_full_plot.png"
+ alt="Complete three dimensional graph of all values of minux one raised to the x power"
+ height="400"
+ width="520">
+ <figcaption>Figure 2 - Full graph</figcaption>
+</figure>
+
+<p>The curve is continuous and spirals around the x-axis, intersecting with the
+real xy-plane at the points plotted in the initial graph of Figure 1. However
+it is still not clear how to represent the area under the curve.</p>
+
+<p>Observing that complex numbers in cartesian form are composed of a real
+part and an imaginary part, it is possible to decompose the function
+into real and imaginary components. These are easy to obtain by rotating the
+graph above to view the real and imaginary parts as flat planes.</p>
+
+<table id="component">
+ <tr>
+ <td>
+ <figure>
+ <img src="/img/cos_pi_x.png"
+ alt="Graph of the real component of minus one raised to the power of x"
+ height="400"
+ width="520">
+ <figcaption>Figure 3 - Real component</figcaption>
+ </figure>
+ </td>
+ <td>
+ <figure>
+ <img src="/img/sin_pi_x.png"
+ alt="Graph of the imaginary component of minus one raised to the power of x"
+ height="400"
+ width="520">
+ <figcaption>Figure 4 - Imaginary component</figcaption>
+ </figure>
+ </td>
+ </tr>
+</table>
+
+<p>From this it can be seen that the function is a combination of a real valued
+cosine and an imaginary valued sine. With the limits of integration under
+consideration, the real values disappear and we are left with the following:</p>
+
+<div class="precontain"><div class="mathblock">
+ <table>
+ <tr>
+ <td colspan="2">
+ <math xmlns="http://www.w3.org/1998/Math/MathML">
+ <mrow>
+ <msubsup>
+ <mo>&int;</mo>
+ <mn>0</mn>
+ <mn>1</mn>
+ </msubsup>
+ <msup>
+ <mfenced>
+ <mn>-1</mn>
+ </mfenced>
+ <mi>x</mi>
+ </msup>
+ <mi>dx</mi>
+ </mrow>
+ </math>
+ </td>
+ </tr>
+ <tr>
+ <td>=</td>
+ <td>
+ <math xmlns="http://www.w3.org/1998/Math/MathML">
+ <mrow>
+ <mi>i</mi>
+ <msubsup>
+ <mo>&int;</mo>
+ <mn>0</mn>
+ <mn>1</mn>
+ </msubsup>
+ <mi>sin</mi>
+ <mfenced>
+ <mrow>
+ <mi>&pi;</mi>
+ <mo>&it;</mo>
+ <mi>x</mi>
+ </mrow>
+ </mfenced>
+ <mi>dx</mi>
+ </mrow>
+ </math>
+ </td>
+ </tr>
+ <tr>
+ <td>=</td>
+ <td>
+ <math xmlns="http://www.w3.org/1998/Math/MathML">
+ <mrow>
+ <mo>-</mo>
+ <mfrac>
+ <mi>i</mi>
+ <mi>&pi;</mi>
+ </mfrac>
+ <msubsup>
+ <menclose notation="right">
+ <mrow>
+ <mi>cos</mi>
+ <mfenced>
+ <mrow>
+ <mi>&pi;</mi>
+ <mo>&it;</mo>
+ <mi>x</mi>
+ </mrow>
+ </mfenced>
+ </mrow>
+ </menclose>
+ <mn>0</mn>
+ <mn>1</mn>
+ </msubsup>
+ </mrow>
+ </math>
+ </td>
+ </tr>
+ <tr>
+ <td>=</td>
+ <td>
+ <math xmlns="http://www.w3.org/1998/Math/MathML">
+ <mrow>
+ <mo>-</mo>
+ <mfrac>
+ <mi>i</mi>
+ <mi>&pi;</mi>
+ </mfrac>
+ <mfenced>
+ <mrow>
+ <mn>-1</mn>
+ <mo>-</mo>
+ <mn>1</mn>
+ </mrow>
+ </mfenced>
+ </mrow>
+ </math>
+ </td>
+ </tr>
+ <tr>
+ <td>=</td>
+ <td>
+ <math xmlns="http://www.w3.org/1998/Math/MathML">
+ <mrow>
+ <mfrac>
+ <mrow>
+ <mn>2</mn>
+ <mi>i</mn>
+ </mrow>
+ <mi>&pi;</mi>
+ </mfrac>
+ </mrow>
+ </math>
+ </td>
+ </tr>
+ </table>
+</div></div>
+
+<p>This agrees with the answer obtained by ordinary evaluation of the integral
+without considering the graph, so the informal area under the curve definition
+still works. Considering the area under the curve using polar coordinates also
+works, but requires evaluating a less than pleasant infinite sum and so won't
+be considered here.</p>
+
+<p>The next interesting question is how this relates to the surface area of a
+<a href="https://www.mathcurve.com/surfaces.gb/helicoiddroit/helicoiddroit.shtml" target="_blank">right helicoid</a>.</p>
+
+{% endblock %}
+
+