1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
{% extends "base.html" %}
{% block title %}Area Under the Curve of a Complex Integral{% endblock %}
{% block style %}
<link href="/css/integral.css" rel="stylesheet">
{% endblock %}
{% block content %}
<h4>Area Under the Curve of a Complex Integral</h4>
<p>Scripts used to generate graphs: <a href="/dld/integral_scripts.zip">Link</a></p>
<h5>29/12/2018</h5>
<p>A definite integral can be represented on the xy-plane as the signed area
bounded by the curve of the function f(x), the x-axis, and the limits of
integration a and b. But it's not immediately clear how this definition applies
for complex valued functions.</p>
<p>Consider the following example:</p>
<div class="precontain"><div class="mathblock">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</msubsup>
<msup>
<mfenced>
<mn>-1</mn>
</mfenced>
<mi>x</mi>
</msup>
<mi>dx</mi>
</mrow>
</math>
</div></div>
<p>If the function is graphed on the xy-plane, the real valued outputs are sparse.
Yet an elementary antiderivative exists and the definite integral is well defined.</p>
<figure>
<img src="/img/minus_one_exp_x_real_values_only.png"
alt="Real values only plot of minus one raised to the x power"
height="400"
width="520">
<figcaption>Figure 1 - Real values only</figcaption>
</figure>
<p>In order to plot a meaningful graph that can be used to potentially calculate
the integral as a signed area, some cues are taken from Philip Lloyd's work on
<a href="https://phantomgraphs.weebly.com/" target="_blank">Phantom Graphs</a>.
In that work, an additional z-axis is used to extend the x-axis into a complex
xz-plane, allowing complex inputs to be graphed. For the function considered
here, the z-axis is instead used to extend the y-axis into a complex yz-plane
to allow graphing of complex outputs instead.</p>
<p>Upon doing so, the following helical graph is obtained:</p>
<figure>
<img src="/img/minus_one_exp_x_full_plot.png"
alt="Complete three dimensional graph of all values of minux one raised to the x power"
height="400"
width="520">
<figcaption>Figure 2 - Full graph</figcaption>
</figure>
<p>The curve is continuous and spirals around the x-axis, intersecting with the
real xy-plane at the points plotted in the initial graph of Figure 1. However
it is still not clear how to represent the area under the curve.</p>
<p>Observing that complex numbers in cartesian form are composed of a real
part and an imaginary part, it is possible to decompose the function
into real and imaginary components. These are easy to obtain by rotating the
graph above to view the real and imaginary parts as flat planes.</p>
<table id="component">
<tr>
<td>
<figure>
<img src="/img/cos_pi_x.png"
alt="Graph of the real component of minus one raised to the power of x"
height="400"
width="520">
<figcaption>Figure 3 - Real component</figcaption>
</figure>
</td>
<td>
<figure>
<img src="/img/sin_pi_x.png"
alt="Graph of the imaginary component of minus one raised to the power of x"
height="400"
width="520">
<figcaption>Figure 4 - Imaginary component</figcaption>
</figure>
</td>
</tr>
</table>
<p>From this it can be seen that the function is a combination of a real valued
cosine and an imaginary valued sine. With the limits of integration under
consideration, the real values disappear and we are left with the following:</p>
<div class="precontain"><div class="mathblock">
<table>
<tr>
<td colspan="2">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</msubsup>
<msup>
<mfenced>
<mn>-1</mn>
</mfenced>
<mi>x</mi>
</msup>
<mi>dx</mi>
</mrow>
</math>
</td>
</tr>
<tr>
<td>=</td>
<td>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<mi>i</mi>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</msubsup>
<mi>sin</mi>
<mfenced>
<mrow>
<mi>π</mi>
<mo>⁢</mo>
<mi>x</mi>
</mrow>
</mfenced>
<mi>dx</mi>
</mrow>
</math>
</td>
</tr>
<tr>
<td>=</td>
<td>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<mo>-</mo>
<mfrac>
<mi>i</mi>
<mi>π</mi>
</mfrac>
<msubsup>
<menclose notation="right">
<mrow>
<mi>cos</mi>
<mfenced>
<mrow>
<mi>π</mi>
<mo>⁢</mo>
<mi>x</mi>
</mrow>
</mfenced>
</mrow>
</menclose>
<mn>0</mn>
<mn>1</mn>
</msubsup>
</mrow>
</math>
</td>
</tr>
<tr>
<td>=</td>
<td>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<mo>-</mo>
<mfrac>
<mi>i</mi>
<mi>π</mi>
</mfrac>
<mfenced>
<mrow>
<mn>-1</mn>
<mo>-</mo>
<mn>1</mn>
</mrow>
</mfenced>
</mrow>
</math>
</td>
</tr>
<tr>
<td>=</td>
<td>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<mfrac>
<mrow>
<mn>2</mn>
<mi>i</mn>
</mrow>
<mi>π</mi>
</mfrac>
</mrow>
</math>
</td>
</tr>
</table>
</div></div>
<p>This agrees with the answer obtained by ordinary evaluation of the integral
without considering the graph, so the informal area under the curve definition
still works. Considering the area under the curve using polar coordinates also
works, but requires evaluating a less than pleasant infinite sum and so won't
be considered here.</p>
<p>The next interesting question is how this relates to the surface area of a
<a href="https://www.mathcurve.com/surfaces.gb/helicoiddroit/helicoiddroit.shtml" target="_blank">right helicoid</a>.</p>
{% endblock %}
|