1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
with
Things,
Ada.Containers.Ordered_Sets,
Ada.Containers.Ordered_Maps;
package body Pathfinding is
type Node is record
X, Y : Integer;
end record;
function "<" (A, B : in Node) return Boolean is
begin
return A.X < B.X or (A.X = B.X and A.Y < B.Y);
end "<";
package Node_Sets is new Ada.Containers.Ordered_Sets
(Element_Type => Node);
package Node_To_Node_Maps is new Ada.Containers.Ordered_Maps
(Key_Type => Node, Element_Type => Node);
subtype G_Score is Integer;
subtype F_Score is Integer;
package G_Score_Maps is new Ada.Containers.Ordered_Maps
(Key_Type => Node, Element_Type => G_Score);
package F_Score_Maps is new Ada.Containers.Ordered_Maps
(Key_Type => Node, Element_Type => F_Score);
G_Scores : G_Score_Maps.Map := G_Score_Maps.Empty_Map;
F_Scores : F_Score_Maps.Map := F_Score_Maps.Empty_Map;
function F_Min
(N_Set : in Node_Sets.Set)
return Node
is
Result : Node := N_Set.First_Element;
begin
for N of N_Set loop
if F_Scores.Contains (N) then
if not F_Scores.Contains (Result) or else
F_Scores.Element (N) < F_Scores.Element (Result)
then
Result := N;
end if;
end if;
end loop;
return Result;
end F_Min;
function Reconstruct_Path
(Came_From : in Node_To_Node_Maps.Map;
Current : in Node)
return Moves.Path
is
Result : Moves.Path := Moves.Empty_Path;
Working : Node := Current;
Next : Node;
begin
while Came_From.Contains (Working) loop
Next := Came_From.Element (Working);
Result.Prefix
((Delta_X => Working.X - Next.X, Delta_Y => Working.Y - Next.Y, Push => False));
Working := Next;
end loop;
return Result;
end Reconstruct_Path;
function Heuristic
(A, B : in Node)
return Integer is
begin
return abs (A.X - B.X) + abs (A.Y - B.Y);
end Heuristic;
function Neighbours
(My_Grid : in Grids.Grid;
Current : in Node)
return Node_Sets.Set
is
use type Things.Thing;
function Valid (X, Y : in Integer) return Boolean is
begin
return My_Grid.In_Bounds (X, Y) and then
My_Grid.Get_Square (X, Y).Is_Walkable and then
My_Grid.Get_Square (X, Y).Get_Contents = Things.Nothing;
end Valid;
Result : Node_Sets.Set := Node_Sets.Empty_Set;
begin
if Valid (Current.X - 1, Current.Y) then
Result.Insert ((Current.X - 1, Current.Y));
end if;
if Valid (Current.X + 1, Current.Y) then
Result.Insert ((Current.X + 1, Current.Y));
end if;
if Valid (Current.X, Current.Y - 1) then
Result.Insert ((Current.X, Current.Y - 1));
end if;
if Valid (Current.X, Current.Y + 1) then
Result.Insert ((Current.X, Current.Y + 1));
end if;
return Result;
end Neighbours;
function A_Star
(My_Grid : in Grids.Grid;
SX, SY : in Integer;
FX, FY : in Integer)
return Moves.Path
is
use type Node_Sets.Set;
Start : Node := (X => SX, Y => SY);
Goal : Node := (X => FX, Y => FY);
Current : Node;
Closed_Set : Node_Sets.Set := Node_Sets.Empty_Set;
Open_Set : Node_Sets.Set := Node_Sets.To_Set (Start);
Came_From : Node_To_Node_Maps.Map := Node_To_Node_Maps.Empty_Map;
New_G_Score : G_Score;
New_F_Score : F_Score;
begin
G_Scores := G_Score_Maps.Empty_Map;
G_Scores.Insert (Start, 0);
F_Scores := F_Score_Maps.Empty_Map;
F_Scores.Insert (Start, Heuristic (Start, Goal));
-- This is a textbook implementation of A* search.
while Open_Set /= Node_Sets.Empty_Set loop
Current := F_Min (Open_Set);
if Current = Goal then
return Reconstruct_Path (Came_From, Current);
end if;
Open_Set.Delete (Current);
Closed_Set.Insert (Current);
for N of Neighbours (My_Grid, Current) loop
if not Closed_Set.Contains (N) then
if not Open_Set.Contains (N) then
Open_Set.Insert (N);
end if;
New_G_Score := G_Scores.Element (Current) + 1;
New_F_Score := New_G_Score + Heuristic (N, Goal);
if not G_Scores.Contains (N) or else
New_G_Score < G_Scores.Element (N)
then
Came_From.Insert (N, Current);
G_Scores.Insert (N, New_G_Score);
F_Scores.Insert (N, New_F_Score);
end if;
end if;
end loop;
end loop;
-- And this is a modification to get as close as possible
-- if the goal is out of reach.
for N of Closed_Set loop
if Heuristic (N, Goal) < Heuristic (Current, Goal) then
Current := N;
end if;
end loop;
return Reconstruct_Path (Came_From, Current);
end A_Star;
end Pathfinding;
|