1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
|
-----------------------------------------------------------------------------
-- File: mupreint.adb; see specification (mupreint.ads)
-----------------------------------------------------------------------------
-- Aug-2007: - No more generics (Long_Block_type,
-- Block_type,... always the largest possible idea: J.C.)
-- - Fixed Basic(...) (based on J.C.'s remarks)
-- Nov-2006: - Multiply_internal with/without copy of result (automatic
-- detection of when it is needed)
-- - Explicit Multiply_internal for Multi_int * Basic_int
-- - Multiply(multi,basic,multi) available as procedure
-- - useless zeroing of quotient removed
-- - useless zeroing of blocks removed for indices
-- above last possible used in *
-- 24-Feb-2002: Div_Rem(u, v, v, r) also possible
-- 23-Feb-2002: DEBUG: +: multiplications are verified by dividing the result
-- +: divisions are verified by comparing i2*q+r and i1
-- 15-Feb-2002: "zero" and 1st index in Divide_absolute_normalized
-- bugs fixed by Duncan Sands (D.S.)
-- To-do/bug symbol: !!
with Multi_precision_integers.Check;
-- with Ada.Text_IO;
with Ada.Unchecked_Deallocation;
package body Multi_precision_integers is
function Shift_Left
(Value : Block_type;
Amount : Natural) return Block_type;
function Shift_Right
(Value : Block_type;
Amount : Natural) return Block_type;
function Shift_Left
(Value : Long_Block_type;
Amount : Natural) return Long_Block_type;
function Shift_Right
(Value : Long_Block_type;
Amount : Natural) return Long_Block_type;
pragma Import (Intrinsic, Shift_Left);
pragma Import (Intrinsic, Shift_Right);
package Check_internal renames Multi_precision_integers.Check;
-- Internal_error: exception;
-- Not_done: exception;
type compar is (smaller, equal, greater);
function Min (a,b: Index_int) return Index_int is
begin if a < b then return a; else return b; end if; end Min;
function Max (a,b: Index_int) return Index_int is
begin if a > b then return a; else return b; end if; end Max;
procedure Reduce_last_nonzero ( n: in out Multi_int ) is
old_last : constant Index_int:= n.last_used;
begin
if Debug then Check_internal.Test(n, test_last=> False); end if;
if n.zero then -- We avoid de-zeroing accidentally
return; -- and returning a false non-zero with rubbish :-)
end if;
n.zero := True;
for i in 0 .. old_last loop -- after old_last it *is* rubbish anyway.
if n.blk(i) /= 0 then
n.zero := False;
n.last_used := i;
end if;
end loop;
end Reduce_last_nonzero;
function Compare_absolute (i1, i2: Multi_int) return compar is
l1, l2 : Index_int;
begin
-- On ne compare que ABS(i1) et ABS(i2)
l1:= i1.last_used;
l2:= i2.last_used;
if l1 > l2 then -- i1 a plus de blocs non nuls
return greater;
elsif l1 < l2 then -- i1 a moins de blocs non nuls
return smaller;
else -- i1 et i2 ont le meme nb de blocs
for i in reverse 0 .. l1 loop -- on parcourt du + signifiant au -
if i1.blk(i) > i2.blk(i) then -- <<chiffre>> de i1 plus grand
return greater;
elsif i1.blk(i) < i2.blk(i) then -- <<chiffre>> de i1 plus petit
return smaller;
end if;
-- M\^emes chiffres -> au suivant!
end loop;
-- Bon, les 2 nombres sont egaux!
return equal;
end if;
end Compare_absolute;
----- Informations, conversions
function Multi(small: Basic_int) return Multi_int is
abss: constant Long_Block_type:= Long_Block_type(abs small);
reste: Long_Block_type;
negs: constant Boolean:= small < 0;
Conversion_overflow : exception;
begin
if abss <= Long_Block_type(maxblock) then
return Multi_int'
( n=> 0, -- 1 bloc suffit
blk=> (0=> Block_type(abss)), -- le bloc contient le nombre
neg=> negs,
zero=> small = 0,
last_used=> 0
);
else
reste:= Shift_Right(abss, Block_type_bits);
if reste <= Long_Block_type(maxblock) then
return ( n=> 1, -- il faut 2 blocs
blk=> (0=> Block_type(abss and maxblock), -- bloc 0
1=> Block_type(reste)), -- bloc 1
neg=> negs,
zero=> False,
last_used=> 1
);
else
if Shift_Right(reste, Block_type_bits) > Long_Block_type(maxblock) then
raise Conversion_overflow;
end if;
return ( n=> 2, -- il faut 3 blocs (e.g. 31 bits 15+15+1)
blk=> (0=> Block_type(abss and maxblock), -- bloc 0
1=> Block_type(reste and maxblock), -- bloc 1
2=> Block_type(Shift_Right(reste, Block_type_bits)) -- bloc 2
),
neg=> negs,
zero=> False,
last_used=> 2
);
end if;
end if;
end Multi;
zero: constant Multi_int:= Multi(0);
one : constant Multi_int:= Multi(1);
Blocks_Per_Basic : constant Positive :=
(Basic_int'Size + Block_type'Size - 1) / Block_type'Size;
-- Convert Multi_int to Basic_int (when possible, else: Cannot_fit raised)
-- 2007:
-- - correct code for block sizes smaller than Basic_int
-- - fixed usage of negative flag
function Basic(large: Multi_int) return Basic_int is
type Same_as_Basic_natural is mod 2 ** Basic_int'Size;
function Shift_Left
(Value : Same_as_Basic_natural;
Amount : Natural) return Same_as_Basic_natural;
pragma Import (Intrinsic, Shift_Left);
result : Same_as_Basic_natural;
block_value: Block_type;
type Huge_int is mod System.Max_Binary_Modulus;
last_bit: Natural;
begin
if large.zero then -- <- 17-Feb-2002
return 0;
end if;
-- Case: too many blocks (whatever sizes)
if 1 + large.last_used > Blocks_Per_Basic then
raise Cannot_fit;
end if;
-- Case: block size and contents larger than basic
block_value:= large.blk(large.last_used);
if Huge_int(block_value) > Huge_int(Basic_int'Last) then
raise Cannot_fit;
end if;
declare
tmp: Block_type:= block_value;
begin
last_bit:= 0;
while tmp /= 0 loop
tmp:= tmp / 2;
last_bit:= last_bit + 1;
end loop;
end;
result:= Same_as_Basic_natural(block_value);
-- If the following loop was on all blocks,
-- the shift by Block_type_bits in the loop could do meaningless
-- things the case Basic_int'Size <= Block_Type'Size
for b in reverse 0 .. large.last_used-1 loop
result:= Shift_Left(result, Block_type_bits);
-- An overflow is not detected by shifting (it's the way we want it!)
-- so we need to detect the overall overflow by locating the
-- last bit.
last_bit:= last_bit + Block_type_bits;
if last_bit > Basic_int'Size - 1 then
-- ^ "- 1" because of sign bit in Basic_int
raise Cannot_fit;
end if;
result:= result + Same_as_Basic_natural(large.blk(b));
end loop;
if large.neg then
return -Basic_int(result);
else
return Basic_int(result);
end if;
end Basic;
-- 14-Feb-2002: "zero" bug fixed by Duncan Sands
procedure Fill(what: out Multi_int; with_smaller:Multi_int) is
l: constant Index_int:= with_smaller.last_used;
begin
if Debug then Check_internal.Test(with_smaller); end if;
what.zero:= with_smaller.zero;
if with_smaller.zero then
return;
end if;
if what.n < l then
raise Array_too_small; -- contenant trop petit
end if;
what.blk(0..l):= with_smaller.blk(0..l); -- copy contents
what.neg:= with_smaller.neg;
what.last_used:= l;
end Fill;
procedure Fill(what:out Multi_int; with_basic: Basic_int) is
begin
Fill( what, Multi(with_basic) );
end Fill;
function Bits_per_block return Positive is
begin
return Block_type_bits;
end Bits_per_block;
---------------------------
----- Unary operators -----
---------------------------
function "+" (i: Multi_int) return Multi_int is begin return i; end "+";
procedure Opp(i: in out Multi_int) is
begin
i.neg:= not i.neg; -- -0 possible, anyway i.zero = True in such a case
end Opp;
function "-" (i: Multi_int) return Multi_int is
res: Multi_int(i.n):= i; -- copy + stack :-(
begin
Opp(res);
return res;
end "-";
procedure Abso(i: in out Multi_int) is
begin
i.neg:= False;
end Abso;
function "Abs" (i: Multi_int) return Multi_int is
abs_i: Multi_int(i.n):= i; -- copy + stack :-(
begin
if Debug then Check_internal.Test(i); end if;
abs_i.neg:= False;
return abs_i;
end "Abs";
function Sign(i: Multi_int) return Basic_int is
begin
if i.zero then return 0;
elsif i.neg then return -1;
else return +1;
end if;
end Sign;
function Even(i: Multi_int) return Boolean is
begin
return i.zero or i.blk(0) mod 2 = 0;
end Even;
function Odd (i: Multi_int) return Boolean is
begin
return (not i.zero) and i.blk(0) mod 2 = 1;
end Odd;
----------------------------
----- Binary operators -----
----------------------------
-- Internal algorithm to add two numbers AS POSITIVE ( > 0 ) !
procedure Add_absolute(i1,i2: in Multi_int; i3: out Multi_int) is
l1: constant Index_int:= i1.last_used;
l2: constant Index_int:= i2.last_used;
min_ind: constant Index_int:= Min( l1, l2 );
max_ind: constant Index_int:= Max( l1, l2 );
s: Long_Block_type:= 0;
retenue_finale: Block_type;
begin
if Debug then Check_internal.Test(i1); Check_internal.Test(i2); end if;
if max_ind > i3.n then
raise Result_undersized;
end if; -- 17-Feb-2002
-- (1) On additionne sur le <<support commun>>
for ind in 0 .. min_ind loop
s:= Long_Block_type(i1.blk(ind)) + Long_Block_type(i2.blk(ind)) +
Shift_Right(s, Block_type_bits); -- (retenue)
i3.blk(ind):= Block_type(s and maxblock);
-- NB: dans un cas de Add(a,b,a) ou Add(a,b,b),
-- i1.blk(ind) ou i2.blk(ind) est modifie en meme temps!
end loop;
-- (2) On poursuit au besoin si i1 a plus de blocs...
if l1 > min_ind then
for ind in min_ind+1 .. max_ind loop
s:= Long_Block_type(i1.blk(ind)) +
Shift_Right(s, Block_type_bits); -- (retenue)
i3.blk(ind):= Block_type(s and maxblock);
end loop;
-- ... ou bien si i2 en a plus.
elsif l2 > min_ind then
for ind in min_ind+1 .. max_ind loop
s:= Long_Block_type(i2.blk(ind)) +
Shift_Right(s, Block_type_bits); -- (retenue)
i3.blk(ind):= Block_type(s and maxblock);
end loop;
end if;
-- (3) Il peut rester une retenue
retenue_finale:= Block_type(Shift_Right(s, Block_type_bits));
if retenue_finale /= 0 then
if max_ind+1 > i3.n then
raise Result_undersized;
end if; -- 17-Feb-2002
i3.blk(max_ind+1):= retenue_finale;
i3.last_used:= max_ind+1;
else
i3.last_used:= max_ind;
end if;
-- (4) i3 = i1+i2 > 0
i3.neg:= False;
i3.zero:= False;
end Add_absolute;
-- Internal algorithm to subtract two numbers AS POSITIVE ( > 0 ) !
procedure Sub_absolute(i1,i2: in Multi_int; i3: in out Multi_int;
sgn: out Boolean) is
l1: constant Index_int:= i1.last_used;
l2: constant Index_int:= i2.last_used;
max_ind: constant Index_int:= Max( l1, l2 );
ai, bi: Long_Block_type;
s: Block_type;
retenue_finale: Long_Block_type;
begin
if Debug then Check_internal.Test(i1); Check_internal.Test(i2); end if;
if max_ind > i3.n then raise Result_undersized; end if; -- 17-Feb-2002
i3.last_used:= 0;
i3.zero:= True;
s:= 0;
-- (1) Soustraction avec retenue
for ind in 0 .. max_ind loop
if ind <= l1 then
ai:= Long_Block_type(i1.blk(ind));
else
ai:= 0;
end if;
if ind <= l2 then
bi:= Long_Block_type(i2.blk(ind)) + Long_Block_type(s);
else
bi:= Long_Block_type(s);
end if;
if ai < bi then
ai:= ai + cardblock;
s:= 1;
else
s:= 0;
end if;
i3.blk(ind):= Block_type(ai-bi);
-- NB: dans un cas de Sub(a,b,a) ou Sub(a,b,b),
-- i1.blk(ind) ou i2.blk(ind) est modifie en meme temps!
if i3.blk(ind) /= 0 then -- au passage, on corrige .last_used et .zero
i3.last_used:= ind;
i3.zero:= False;
end if;
end loop;
-- (2) Traitement de la derni\`ere retenue
if s = 0 then
i3.neg := False;
sgn := False;
else
i3.neg := True;
sgn := True;
i3.last_used:= 0;
retenue_finale:= 1; -- on fait "9-chaque chiffre" et on ajoute 1 au tout
for i in 0 .. max_ind loop
retenue_finale:=
Long_Block_type(maxblock) -
Long_Block_type(i3.blk(i)) + retenue_finale;
i3.blk(i):= Block_type(retenue_finale and maxblock);
if i3.blk(i) /= 0 then
i3.last_used:= i;
end if;
retenue_finale:= Shift_Right(retenue_finale, Block_type_bits);
end loop;
end if;
end Sub_absolute;
procedure Add(i1,i2: in Multi_int; i3: in out Multi_int) is
sgn: Boolean;
begin
-- (1) Les cas o\`u i1 ou i2 = 0
if i1.zero and i2.zero then
i3.zero:= True;
elsif i1.zero then
Fill( i3, i2 );
elsif i2.zero then
Fill( i3, i1 );
-- (2) Maintenant: i1 /= 0 et i2 /= 0; on regarde les signes
-- (2.1) Facile: i1 et i2 de m\^eme signe
elsif i1.neg = i2.neg then
Add_absolute( i1,i2, i3 ); -- On fait comme si i1>0 et i2>0
i3.neg:= i1.neg; -- et on met le bon signe
-- (2.2) i1 < 0, i2 > 0, donc i3 = i2 - abs(i1)
elsif i1.neg and not i2.neg then
Sub_absolute( i2,i1, i3, sgn);
-- (2.3) i1 > 0, i2 < 0, donc i3 = i1 - abs(i2)
elsif i2.neg and not i1.neg then
Sub_absolute( i1,i2, i3, sgn );
end if;
end Add;
function "+" (i1,i2: Multi_int) return Multi_int is
somme: Multi_int( Max(i1.n, i2.n) + 1 );
begin
Add( i1,i2, somme );
return somme;
end "+";
procedure Sub(i1,i2: in Multi_int; i3: in out Multi_int) is
sgn: Boolean;
begin
-- (1) Les cas o\`u i1 ou i2 = 0
if i1.zero and i2.zero then i3.zero:= True;
elsif i1.zero then Fill( i3, i2 ); i3.neg:= not i2.neg;
elsif i2.zero then Fill( i3, i1 );
-- (2) Maintenant: i1 /= 0 et i2 /= 0; on regarde les signes
-- (2.1) Facile: i1 et i2 de m\^eme signe
elsif i1.neg = i2.neg then
Sub_absolute( i1,i2, i3, sgn ); -- On fait comme si i1>0 et i2>0
-- et on met le bon signe
i3.neg:= i1.neg xor sgn;
-- 26-Mar-2002: equivalent a:
-- if i1.neg then
-- i3.neg:= NOT sgn;
-- else
-- i3.neg:= sgn;
-- end if;
-- (2.2) i1 < 0, i2 > 0, donc i3 = i1-i2 = - (abs(i1) + abs(i2))
elsif i1.neg and not i2.neg then
Add_absolute( i1,i2, i3 );
i3.neg:= True;
-- (2.3) i1 > 0, i2 < 0, donc i3 = i1-i2 = i1 + (-i2) = i1 + abs(i2)
elsif i2.neg and not i1.neg then
Add_absolute( i1,i2, i3 );
end if;
end Sub;
function "-" (i1,i2: Multi_int) return Multi_int is
diff: Multi_int( Max(i1.n, i2.n) + 1); -- +1: retenue possible (add_abs.)
begin
Sub( i1,i2, diff );
return diff;
end "-";
function "+" (i1: Multi_int; i2: Basic_int) return Multi_int is
begin return i1 + Multi(i2); end "+";
function "+" (i1: Basic_int; i2: Multi_int) return Multi_int is
begin return Multi(i1) + i2; end "+";
function "-" (i1: Multi_int; i2: Basic_int) return Multi_int is
begin return i1 - Multi(i2); end "-";
function "-" (i1: Basic_int; i2: Multi_int) return Multi_int is
begin return Multi(i1) - i2; end "-";
----- Begin of MULTIPLICATION part -----
-- Added 2006: choice to copy result into i3 or write directly into i3
generic
copy: Boolean;
procedure Multiply_internal_m_m(i1,i2: in Multi_int; i3: in out Multi_int);
type p_Block_array is access Block_array;
procedure Dispose is new Ada.Unchecked_Deallocation(Block_array,p_Block_array);
-------------------
-- Multi * Multi --
-------------------
-- To do: implement a faster algorithm.
-- 1) Karatsuba's algorithm
-- Ada code for string arithm exists !!
-- http://www.csc.liv.ac.uk/~ped/teachadmin/algor/karatsuba.ada
-- 2) Better: Schönhage-Strassen algorithm (no Ada code)
procedure Multiply_internal_m_m(i1,i2: in Multi_int; i3: in out Multi_int) is
l1: constant Index_int:= i1.last_used;
l2: constant Index_int:= i2.last_used;
last_max: constant Index_int:= l1 + l2 + 2;
prod,sum_carry,rk,i1j : Long_Block_type;
i,k: Index_int;
res: p_Block_array;
-- res: buffer used in the "copy" variant to avoid
-- problems with Multiply(i,j,i) or Multiply(j,i,i)
begin
if i1.zero or i2.zero then
i3.zero:= True;
return;
end if;
if last_max > i3.n then
raise Result_undersized;
end if;
if copy then
res:= new Block_array( 0..last_max );
for k in res'Range loop res(k):= 0; end loop;
-- Seems slower :-( : res:= new Block_array'( 0..last_max => 0);
else
for k in 0..last_max loop i3.blk(k):= 0; end loop;
-- Slower :-( : i3.blk(0..last_max):= (others => 0);
end if;
i3.zero:= False;
i3.last_used:= last_max;
-- NB: va changer i1.last_used ou i2.last_used si
-- i1 ou i2 et i3 sont les memes
for j in 0..l1 loop
i1j:= Long_Block_type(i1.blk(j));
sum_carry:= 0;
i:= 0;
k:= j;
loop
if i <= l2 then
prod:= i1j * Long_Block_type(i2.blk(i));
else
exit when sum_carry = 0; -- nothing more to add
prod:= 0;
end if;
if copy then
rk:= Long_Block_type(res(k));
else
rk:= Long_Block_type(i3.blk(k));
end if;
sum_carry:= rk + prod + sum_carry;
if copy then
res(k):= Block_type(sum_carry and maxblock); -- somme
else
i3.blk(k):= Block_type(sum_carry and maxblock); -- somme
end if;
sum_carry:= Shift_Right(sum_carry, Block_type_bits); -- retenue
i:= i + 1;
k:= k + 1;
end loop;
end loop;
if copy then
i3.blk(res'Range):= res.all;
Dispose(res);
end if;
Reduce_last_nonzero( i3 );
i3.neg:= i1.neg /= i2.neg;
end Multiply_internal_m_m;
procedure Multiply_internal_copy is
new Multiply_internal_m_m( copy => True );
procedure Multiply_internal_copy_export(i1,i2: in Multi_int; i3: in out Multi_int)
renames Multiply_internal_copy;
-- ^ At least GNAT <= GPL 2006 requires the trick with renames...
-- ObjectAda 7.2.2 too -> there must be a good reason...
procedure Multiply_internal_no_copy is
new Multiply_internal_m_m( copy => False );
-------------------
-- Multi * Basic --
-- added 2006 --
-------------------
generic
copy: Boolean;
procedure Multiply_internal_m_b(i1: in Multi_int; i2: Basic_int; i3: in out Multi_int);
procedure Multiply_internal_m_b(i1: in Multi_int; i2: Basic_int; i3: in out Multi_int) is
l1: constant Index_int:= i1.last_used;
last_max: constant Index_int:= l1 + 2;
prod,sum_carry,rk,i2a : Long_Block_type;
k: Index_int;
res: p_Block_array;
-- res: buffer used in the "copy" variant to avoid
-- problems with Multiply(i,j,i) or Multiply(j,i,i)
begin
if i1.zero or i2=0 then
i3.zero:= True;
return;
end if;
if last_max > i3.n then
raise Result_undersized;
end if;
if copy then
res:= new Block_array( 0..last_max );
for k in res'Range loop res(k):= 0; end loop;
-- Seems slower :-( : res:= new Block_array'( 0..last_max => 0);
else
for k in 0..last_max loop i3.blk(k):= 0; end loop;
-- Slower :-( : i3.blk(0..last_max):= (others => 0);
end if;
i3.zero:= False;
i3.last_used:= last_max;
-- NB: va changer i1.last_used ou i2.last_used si i1 ou i2 et i3 sont les memes
i2a:= Long_Block_type(abs i2);
for j in 0..l1 loop
k:= j;
sum_carry:= 0;
prod:= Long_Block_type(i1.blk(j)) * i2a;
loop
if copy then
rk:= Long_Block_type(res(k));
else
rk:= Long_Block_type(i3.blk(k));
end if;
sum_carry:= rk + prod + sum_carry;
if copy then
res(k):= Block_type(sum_carry and maxblock); -- somme
else
i3.blk(k):= Block_type(sum_carry and maxblock); -- somme
end if;
sum_carry:= Shift_Right(sum_carry, Block_type_bits); -- retenue
exit when sum_carry = 0; -- nothing more to add
prod:= 0;
k:= k + 1;
end loop;
end loop;
if copy then
i3.blk(res'Range):= res.all;
Dispose(res);
end if;
Reduce_last_nonzero( i3 );
i3.neg:= i1.neg /= (i2 < 0);
end Multiply_internal_m_b;
procedure Multiply_internal_copy is
new Multiply_internal_m_b( copy => True );
procedure Multiply_internal_no_copy is
new Multiply_internal_m_b( copy => False );
procedure Multiply(i1,i2: in Multi_int; i3: in out Multi_int) is
use System;
begin
if Debug then
declare
m1: constant Multi_int:= i1;
m2: constant Multi_int:= i2;
begin
Multiply_internal_no_copy(m1,m2,i3);
Check_internal.Check_Multiplication(m1,m2,i3);
end;
else
if i1'Address = i3'Address or i2'Address = i3'Address then
-- Ada.Text_IO.Put_Line("* with copy");
Multiply_internal_copy(i1,i2,i3);
else
-- Ada.Text_IO.Put_Line("* without copy");
Multiply_internal_no_copy(i1,i2,i3);
end if;
end if;
end Multiply;
procedure Multiply(i1: in Multi_int; i2: Basic_int; i3: in out Multi_int) is
use System;
begin
if Debug then
declare
m1: constant Multi_int:= i1;
m2: constant Basic_int:= i2;
begin
Multiply_internal_no_copy(m1,m2,i3);
Check_internal.Check_Multiplication(m1,Multi(m2),i3);
end;
else
if i1'Address = i3'Address or i2'Address = i3'Address then
-- Ada.Text_IO.Put_Line("* with copy");
Multiply_internal_copy(i1,i2,i3);
else
-- Ada.Text_IO.Put_Line("* without copy");
Multiply_internal_no_copy(i1,i2,i3);
end if;
end if;
end Multiply;
function "*" (i1,i2: Multi_int) return Multi_int is
begin
if i1.zero or i2.zero then
return zero;
else
declare
prod: Multi_int( i1.last_used + i2.last_used + 2 );
begin
Multiply( i1,i2, prod );
return prod;
end;
end if;
end "*";
function "*" (i1: Multi_int; i2: Basic_int) return Multi_int is
begin
if i1.zero or i2=0 then
return zero;
else
declare
prod: Multi_int( i1.last_used + 4 );
begin
Multiply( i1,i2, prod );
return prod;
end;
end if;
end "*";
function "*" (i1: Basic_int; i2: Multi_int) return Multi_int is
begin
if i2.zero or i1=0 then
return zero;
else
declare
prod: Multi_int( i2.last_used + 4 );
begin
Multiply( i2,i1, prod );
return prod;
end;
end if;
end "*";
----- Begin of DIVISION part -----
-- Interne: Division et reste en 1 coup
procedure Div_Rem(a,b: Long_Block_type; q,r: out Long_Block_type) is
Conflict_with_REM: exception;
begin
q:= a / b;
r:= a - b*q;
if Debug and then r /= (a rem b) then
raise Conflict_with_REM;
end if;
end Div_Rem;
procedure Divide_absolute_normalized ( u: in out Multi_int; -- output: u = r
v: in Multi_int;
q: in out Multi_int ) is
qi: Index_int:= u.last_used - v.last_used - 1; -- was: q.n; D.S. Feb-2002
v1: constant Long_Block_type:= Long_Block_type(v.blk(v.last_used ));
v2: constant Long_Block_type:= Long_Block_type(v.blk(v.last_used-1));
vlast : constant Index_int:= v.last_used;
v1L : constant Long_Block_type := v1;
guess,
comparand : Long_Block_type ;
function Divide_subtract ( ustart: Index_int ) return Block_type is
ui : Index_int;
carry : Long_Block_type;
begin
if guess = 0 then
return 0;
end if;
ui:= ustart;
carry:= 0;
-- On soustrait (le chiffre du quotient) * diviseur au dividende
for vi in 0 .. vlast loop
declare
prod: constant Long_Block_type := Long_Block_type(v.blk(vi)) * guess + carry;
bpro: constant Block_type:= Block_type(prod and maxblock);
diff: constant Long_Block_type_signed := Long_Block_type_signed(u.blk(ui)) - Long_Block_type_signed(bpro);
begin
if diff < 0 then
u.blk(ui) := Block_type(diff + cardblock);
carry := Shift_Right(prod, Block_type_bits) + 1;
else
u.blk(ui) := Block_type(diff);
carry := Shift_Right(prod, Block_type_bits);
end if;
ui:= ui + 1;
end;
end loop;
if carry = 0 then
return Block_type(guess and maxblock);
end if;
declare
diff: constant Long_Block_type_signed :=
Long_Block_type_signed(u.blk(ui)) - Long_Block_type_signed(carry and maxblock);
begin
if diff < 0 then
u.blk(ui) := Block_type(diff + cardblock); -- carry generated
else
u.blk(ui) := Block_type(diff);
return Block_type(guess and maxblock);
end if;
end;
-- Carry was generated
declare
icarry: Block_type := 0;
begin
ui := ustart;
for vi in 0 .. vlast loop
declare
sum: constant Long_Block_type :=
Long_Block_type(v.blk(vi)) +
Long_Block_type(u.blk(ui)) +
Long_Block_type(icarry);
begin
u.blk(ui) := Block_type(sum and maxblock);
ui:= ui + 1;
icarry := Block_type(Shift_Right(sum, Block_type_bits));
end;
end loop;
if icarry = 1 then
u.blk(ui) := Block_type((Long_Block_type(u.blk(ui))+1) and maxblock);
end if;
end;
return Block_type((guess-1) and maxblock);
end Divide_subtract;
is_q_zero: Boolean:= True;
begin -- Divide_absolute_normalized
-- for i in q.blk'Range loop q.blk(i):= 0; end loop;
--
-- ^ zeroing useless: q.last_used = u.last_used-v.last_used-1
-- and q.blk(0..q.last_used) is written below q.blk(qi) := ...
-- GM 4-nov-2006
q.last_used:= qi; -- was: q.n; D.S. Feb-2002
for j in reverse vlast+1 .. u.last_used loop
declare
uj : constant Long_Block_type := Long_Block_type(u.blk(j));
uj1: constant Long_Block_type := Long_Block_type(u.blk(j-1));
uj2: constant Long_Block_type := Long_Block_type(u.blk(j-2));
ujL: Long_Block_type;
rmL: Long_Block_type;
begin
ujL := Shift_Left(uj, Block_type_bits) + uj1;
Div_Rem( ujL, v1L, guess, rmL );
comparand := Shift_Left(rmL, Block_type_bits) + uj2;
while comparand < v2 * guess loop
guess:= guess - 1;
comparand:= comparand + Shift_Left(v1L, Block_type_bits);
exit when comparand > cardblock * cardblock;
end loop;
q.blk(qi) := Divide_subtract( j - vlast - 1 );
if q.blk(qi) /= 0 and then is_q_zero then -- n'arrive que 0 ou 1 fois
is_q_zero:= False;
q.last_used:= qi;
end if;
qi:= qi - 1;
end;
end loop; -- j
q.zero:= is_q_zero;
if Debug then Check_internal.Test(q); end if;
end Divide_absolute_normalized;
procedure Divide_absolute_big_small ( u: in Multi_int;
v: in Long_Block_type;
q: out Multi_int;
r: out Long_Block_type ) is
n: Long_Block_type;
Quotient_constraint_error: exception;
last_u_nz: constant Index_int:= u.last_used;
u_zero: constant Boolean:= u.zero;
-- in case u and q are the same variables
is_q_zero: Boolean:= True;
begin
if q.n < last_u_nz then raise Quotient_constraint_error; end if;
q.last_used:= 0;
q.neg:= False;
r:= 0;
if not u_zero then
for i in reverse 0 .. last_u_nz loop
n:= Long_Block_type(u.blk(i)) + Shift_Left(r, Block_type_bits);
r:= n mod v;
q.blk(i):= Block_type(n / v);
if q.blk(i)/= 0 and then is_q_zero then
is_q_zero:= False;
q.last_used:= i;
end if;
end loop;
q.zero:= is_q_zero;
end if;
end Divide_absolute_big_small;
procedure Solve_signs_for_Div_Rem (i1n,i2n: in Boolean; qn,rn: out Boolean) is
begin
-- Invariant: i1= i2*q+r on cherche (pos) = (pos)*(pos)+(pos)
if i1n and i2n then -- i1<0; i2<0 (-i1) = (-i2) * q + (-r)
qn:= False; -- Quotient > 0
-- rn:= True; -- Reste < 0
elsif i1n then -- i1<0; i2>0 (-i1) = i2 *(-q) + (-r)
qn:= True; -- Quotient < 0
-- rn:= True; -- Reste < 0
elsif i2n then -- i1>0; i2<0 i1 = (-i2) *(-q) + r
qn:= True; -- Quotient < 0
-- rn:= False; -- Reste > 0
else -- i1>0; i2>0 i1 = i2 * q + r
qn:= False; -- Quotient > 0
-- rn:= False; -- Reste > 0
end if;
-- on observe que... "(A rem B) has the sign of A " ARM 4.5.5
-- en effet on peut mettre:
rn:= i1n;
end Solve_signs_for_Div_Rem;
procedure Div_Rem (i1: in Multi_int; i2: in Basic_int;
q : out Multi_int; r: out Basic_int) is
i1_neg: constant Boolean:= i1.neg;
-- in case i1 and q are the same variables
rneg: Boolean;
lai2, lr: Long_Block_type;
begin
if Debug then Check_internal.Test(i1); end if;
if i2=0 then raise Division_by_zero; end if;
if i1.zero then -- 15-Feb-2002: 0/i2
q.zero:= True;
r:= 0;
return;
end if;
lai2:= Long_Block_type(abs i2);
Divide_absolute_big_small( i1, lai2, q, lr );
r:= Basic_int(lr);
Solve_signs_for_Div_Rem( i1_neg,i2<0, q.neg, rneg );
if rneg then r:= -r; end if;
end Div_Rem;
type Div_Rem_mode is (div_only, both);
generic
div_rem_output: Div_Rem_mode;
procedure Div_Rem_internal (i1,i2: in Multi_int; q,r: in out Multi_int);
procedure Div_Rem_internal (i1,i2: in Multi_int; q,r: in out Multi_int) is
-- Calculate u/v
procedure Divide_absolute ( u,v: in Multi_int;
q,r: in out Multi_int ) is
shift: Integer:= 0;
v1: Block_type:= v.blk(v.last_used);
v_zero, v1_zero: exception;
u_work: Multi_int(u.last_used+2);
use System;
procedure Normalization ( source: in Multi_int;
target: in out Multi_int ) is
carry: Block_type:= 0;
tl: constant Index_int:= target.last_used;
blk: Block_type;
begin
for i in 0 .. source.last_used loop
blk:= source.blk(i);
target.blk(i) := Shift_Left(blk, shift) + carry;
carry := Shift_Right(blk, Block_type_bits - shift);
end loop;
if source.last_used < tl then
target.blk(source.last_used+1):= carry;
end if;
for i in source.last_used+2 .. tl loop
target.blk(i):= 0;
end loop;
end Normalization;
procedure Unnormalization ( m: in out Multi_int) is
carry: Block_type:= 0;
blk: Block_type;
begin
for i in reverse 0 .. m.last_used loop
blk:= m.blk(i);
m.blk(i) := Shift_Right(blk, shift) + carry;
carry := Shift_Left(blk, Block_type_bits - shift);
end loop;
end Unnormalization;
begin -- Divide_absolute (multi u / multi v)
if Debug then
if v.zero then raise v_zero; end if;
if v1=0 then raise v1_zero; end if;
end if;
-- Calculate shift needed to normalize
u_work.last_used:= u_work.n;
u_work.zero:= False;
while v1 < 2**(Block_type_bits-1) loop
shift:= shift + 1;
v1:= v1 * 2;
end loop;
if shift = 0 then -- no shift needed
u_work.blk( 0..u.last_used ):= u.blk( 0..u.last_used );
u_work.blk( u.last_used+1 .. u_work.last_used):= (0,0);
-- Now, u is copied, so a Div_Rem(u, v, u, r) won't crash
if v'Address = q'Address then
declare
v_work: Multi_int(v.last_used);
begin
-- 23-Feb-2002: also copy v, in case of a Div_Rem(u, v, v, r)
v_work.blk( 0..v.last_used ):= v.blk( 0..v.last_used );
v_work.neg := v.neg;
v_work.zero := v.zero;
v_work.last_used:= v.last_used;
-- Now, u is copied, so a Div_Rem(u, v, v, r) won't crash
-- Ada.Text_IO.Put_Line("* divisor with copy");
Divide_absolute_normalized( u_work,v_work, q );
end;
else
-- Ada.Text_IO.Put_Line("* divisor without copy");
Divide_absolute_normalized( u_work,v, q );
end if;
else -- shift needed
declare
v_work: Multi_int(v.last_used);
begin
v_work.last_used:= v_work.n;
Normalization( u, u_work );
Normalization( v, v_work );
Reduce_last_nonzero( v_work );
Divide_absolute_normalized( u_work,v_work, q );
end;
if div_rem_output /= div_only then
Unnormalization( u_work );
end if;
end if;
q.neg:= False; -- check friendly
if div_rem_output /= div_only then
u_work.neg:= False; -- check friendly
Reduce_last_nonzero( u_work );
Fill( r, u_work );
end if;
end Divide_absolute;
l1: constant Index_int:= i1.last_used;
l2: constant Index_int:= i2.last_used;
rl: Long_Block_type;
begin -- Div_Rem_internal
if i2.zero then raise Division_by_zero; end if;
if i1.zero then -- 15-Feb-2002: 0/i2
q.zero:= True;
r.zero:= True;
return;
end if;
if q.n < l1 - l2 then
-- 17-Feb-2002
raise Quotient_undersized;
end if;
if div_rem_output /= div_only and then r.n < Max( l1, l2 ) then
-- 17-Feb-2002
raise Remainder_undersized;
end if;
if l2 = 0 then
if l1 = 0 then -- On a affaire a une ridicule division d'entiers
q.blk(0):= i1.blk(0) / i2.blk(0);
if div_rem_output /= div_only then
r.blk(0):= Block_type(
abs(
Long_Block_type_signed(i1.blk(0))
- Long_Block_type_signed(i2.blk(0))
* Long_Block_type_signed(q.blk(0))
)
);
end if;
q.zero:= q.blk(0) = 0;
q.last_used:= 0;
else -- multi / entier
Divide_absolute_big_small( i1, Long_Block_type(i2.blk(0)), q, rl );
if div_rem_output /= div_only then
r.blk(0):= Block_type(rl);
end if;
end if;
if div_rem_output /= div_only then
r.zero:= r.blk(0) = 0;
r.last_used:= 0;
end if;
else -- multi / multi
case Compare_absolute(i2 , i1) is
when greater =>
q.zero:= True; -- q:= 0;
q.last_used:= 0;
q.neg:= False;
if div_rem_output /= div_only then
Fill( r, i1 ); -- r:= i1, q:=0 car i1 = 0 * i2 (>i1 en v.abs) + r
end if;
return;
when equal =>
Fill( q, one ); -- Fill( q, Multi(1) );
r.zero:= True; -- Fill( r, Multi(0) );
when smaller => -- cas <<normal>>: diviseur < dividende
Divide_absolute( i1,i2, q,r );
end case;
end if;
Solve_signs_for_Div_Rem( i1.neg,i2.neg, q.neg,r.neg );
end Div_Rem_internal;
procedure Div_Rem_internal_div_only is
new Div_Rem_internal( div_rem_output => div_only );
procedure Div_Rem_internal_both is
new Div_Rem_internal( div_rem_output => both );
procedure Div_Rem_internal_both_export(i1,i2: in Multi_int; q,r: in out Multi_int)
renames Div_Rem_internal_both;
procedure Div_Rem (i1,i2: in Multi_int; q,r: out Multi_int) is
begin
if Debug then
declare
m1: constant Multi_int:= i1;
m2: constant Multi_int:= i2;
begin
Div_Rem_internal_both(m1,m2,q,r);
Check_internal.Check_Div_Rem(m1,m2,q,r);
end;
else
Div_Rem_internal_both(i1,i2,q,r);
end if;
end Div_Rem;
procedure Divide (i1,i2: in Multi_int; q: out Multi_int) is
begin
if Debug then
declare
m1: constant Multi_int:= i1;
m2: constant Multi_int:= i2;
r: Multi_int( Max( i1.last_used, i2.last_used) + 2 );
begin
Div_Rem_internal_both(m1,m2,q,r);
Check_internal.Check_Div_Rem(m1,m2,q,r);
end;
else
declare
r: Multi_int(0); -- Fake
begin
Div_Rem_internal_div_only(i1,i2,q,r);
end;
end if;
end Divide;
function "/" (i1,i2: Multi_int) return Multi_int is
q: Multi_int( Max( 0, i1.last_used - i2.last_used + 1) );
r: Multi_int( Max( i1.last_used, i2.last_used) + 2 );
begin
Div_Rem(i1,i2, q,r);
return q;
end "/";
function "/" (i1: Multi_int; i2: Basic_int) return Multi_int is
q: Multi_int(i1.last_used + 1);
r: Basic_int;
begin
Div_Rem(i1,i2, q,r);
return q;
end "/";
function "rem" (i1,i2: Multi_int) return Multi_int is
q: Multi_int(Max(0,i1.last_used - i2.last_used + 1));
r: Multi_int(Max(i1.last_used,i2.last_used) + 2);
begin
Div_Rem(i1,i2, q,r);
return r;
end "rem";
function "rem" (i1: Multi_int; i2: Basic_int) return Multi_int is
begin return i1 rem Multi(i2); end "rem";
function "rem" (i1: Multi_int; i2: Basic_int) return Basic_int is
q: Multi_int(i1.last_used + 1);
r: Basic_int;
begin
Div_Rem(i1,i2, q,r);
return r;
end "rem";
function "mod" (i1,i2: Multi_int) return Multi_int is
q: Multi_int(Max(0,i1.last_used - i2.last_used + 1));
r: Multi_int(Max(i1.last_used,i2.last_used) + 2);
begin
-- Ada RM, 4.5.5 Multiplying Operators
-- (8)
-- The signed integer modulus operator is defined such that
-- the result of A mod B has the sign of B and an absolute value
-- less than the absolute value of B; in addition, for some signed
-- integer value N, this result satisfies the relation:
-- (9) A = B*N + (A mod B)
Div_Rem(i1,i2, q,r);
if r.zero or else i2.neg = r.neg then -- (A rem B) est nul ou
return r; -- a le meme signe que B, donc (A mod B) = (A rem B)
else -- signe opposes
return i2+r; -- alors (B + (A rem B)) est le bon candidat
end if;
end "mod";
function "mod" (i1: Multi_int; i2: Basic_int) return Multi_int is
begin return i1 mod Multi(i2); end "mod";
function "mod" (i1: Multi_int; i2: Basic_int) return Basic_int is
r: constant Basic_int:= i1 rem i2;
begin
if r=0 or else (i2<0) = (r<0) then -- (A rem B) est nul ou
return r; -- a le meme signe que B, donc (A mod B) = (A rem B)
else -- signe opposes
return i2+r; -- alors (B + (A rem B)) est le bon candidat
end if;
end "mod";
----- End of DIVISION part ------
----- Begin of POWER part -------
procedure Power (i: Multi_int; n: Natural; ipn: out Multi_int) is
max_ipn_last: Index_int; -- 17-Feb-2002
begin
if i.zero then
if n=0 then
raise Zero_power_zero;
else
-- The 0**n = 0 case (17-Feb-2002).
ipn.zero:= True; -- 4-Nov-2006, was: Fill( ipn, Multi(0) );
return;
end if;
end if;
max_ipn_last:= ((1+i.last_used) * Index_int(n)-1)+2;
if ipn.n < max_ipn_last then
raise Result_undersized;
end if;
case n is
when 0 => Fill( ipn, one ); -- the i**0 = 1 case
when 1 => Fill( ipn, i); -- the i**1 = i case
when others =>
declare
nn: Natural:= n-1;
i0, ii: Multi_int( max_ipn_last );
begin
Fill(i0, i);
Fill(ii, i0 );
while nn > 0 loop
if nn mod 2 = 0 then -- x^(2 c) = (x^2) ^c
Mult(i0,i0, i0);
nn:= nn / 2;
else
Mult(i0,ii, ii);
nn:= nn - 1;
end if;
end loop;
Fill( ipn, ii);
end;
end case;
end Power;
function "**" (i: Multi_int; n: Natural) return Multi_int is
ipn: Multi_int( (1+i.last_used) * Index_int(n)+2 );
begin
Power(i,n,ipn);
return ipn;
end "**";
procedure Power (i: Multi_int; n: Multi_int; ipn: out Multi_int;
modulo: Multi_int) is
max_ipn_last: Index_int;
begin
if i.zero then
if n.zero then
raise Zero_power_zero;
else
-- The 0**n = 0 case (17-Feb-2002).
ipn.zero:= True; -- 4-Nov-2006, was: Fill( ipn, Multi(0) );
return;
end if;
end if;
if n.neg then
raise Power_negative;
end if;
if modulo.zero or else (i.neg or modulo.neg) then
raise Power_modulo_non_positive;
end if;
max_ipn_last:= 2*modulo.last_used+2;
if ipn.n < max_ipn_last then
raise Result_undersized;
end if;
if n.zero then
Fill( ipn, one ); -- the i**0 = 1 case
elsif Equal( n, one ) then
Fill( ipn, i); -- the i**1 = i case
else
declare
nn: Multi_int(n.n):= n;
i0, ii, dummy: Multi_int( max_ipn_last );
dummy_b: Basic_int;
begin
Subtract( nn, one, nn ); -- nn:= nn - 1;
Fill(i0, i);
Fill(ii, i0 );
while nn > 0 loop
if Even(nn) then -- x^(2 c) = (x^2) ^c
Mult(i0,i0, i0);
Div_Rem(nn, 2, nn, dummy_b); -- nn:= nn/2
Div_Rem(i0,modulo,dummy,i0); -- i0:= i0 mod modulo
else
Mult(i0,ii, ii);
Subtract( nn, one, nn ); -- nn:= nn - 1;
Div_Rem(ii,modulo,dummy,ii); -- ii:= ii mod modulo
end if;
end loop;
Fill( ipn, ii);
end;
end if;
end Power;
----- End of POWER part ---------
----- Comparisons
function Equal (i1,i2: Multi_int) return Boolean is
begin
if i1.zero and then i2.zero then
return True;
end if;
if i1.zero = i2.zero and then
i1.neg = i2.neg and then
i1.last_used = i2.last_used then
return i1.blk(0..i1.last_used) = i2.blk(0..i2.last_used);
else
return False;
end if;
end Equal;
function Equal (i1: Multi_int; i2:Basic_int) return Boolean is
begin
return Equal( i1, Multi(i2) );
end Equal;
function ">" (i1,i2: Multi_int) return Boolean is
begin
-- (1) Cas \'evident o\`u: i1 <= i2
if (i1.zero or i1.neg) and then -- i1 <= 0 et
(i2.zero or not i2.neg) then -- i2 >= 0
return False;
end if;
-- (2.1) Cas \'evident o\`u: i1 > i2
if ((not i1.zero) and not i1.neg) and then -- i1 > 0 et
(i2.zero or i2.neg) then -- i2 <= 0
return True;
end if;
-- (2.2) Cas \'evident o\`u: i1 > i2
if (i1.zero or not i1.neg) and then -- i1 >= 0 et
((not i2.zero) and i2.neg) then -- i2 < 0
return True;
end if;
-- Cas faciles resolus:
-- i1 > i2 - 0 +
-------------------
-- - # F F
-- 0 T F F
-- + T T #
-- On a les cas avec "#", o\`u i1 et i2 ont le meme signe
if i1.neg then
return not (Compare_absolute (i1,i2) = greater);
else
return (Compare_absolute (i1,i2) = greater);
end if;
end ">";
function ">" (i1: Multi_int; i2:Basic_int) return Boolean is
begin
return i1 > Multi(i2);
end ">";
function "<" (i1,i2: Multi_int) return Boolean is
begin return i2>i1; end "<";
function "<" (i1: Multi_int; i2:Basic_int) return Boolean is
begin
return i1 < Multi(i2);
end "<";
function ">=" (i1,i2: Multi_int) return Boolean is
begin return not (i2>i1); end ">=";
function ">=" (i1: Multi_int; i2:Basic_int) return Boolean is
begin
return i1 >= Multi(i2);
end ">=";
function "<=" (i1,i2: Multi_int) return Boolean is
begin return not (i1>i2); end "<=";
function "<=" (i1: Multi_int; i2:Basic_int) return Boolean is
begin
return i1 <= Multi(i2);
end "<=";
end Multi_precision_integers;
|