1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
module Library.ProofGraph (
PGraph,
doGraphGen,
checkDupe,
nodeEquals,
resolveNodeClash
) where
import Data.Maybe
import Data.List
import Data.Set( Set )
import qualified Data.Set as Set
import Data.Map( Map, (!) )
import qualified Data.Map as Map
import Data.Graph.Inductive.Graph( Node, LNode, LEdge, (&) )
import qualified Data.Graph.Inductive.Graph as Graph
import Data.Graph.Inductive.Tree
import Library.Stack( Stack, at, (<:>) )
import qualified Library.Stack as Stack
import Library.Parse( isNumber, isName )
type PGraph = Gr String (Int,Int)
type PStack = Stack (Int, LNode String)
type PMap = Map Int (Int, LNode String)
data CommandIO = IO { args :: Int
, results :: Int }
argMap :: String -> CommandIO
argMap "absTerm" = IO 2 1
argMap "absThm" = IO 2 1
argMap "appTerm" = IO 2 1
argMap "appThm" = IO 2 1
argMap "assume" = IO 1 1
argMap "axiom" = IO 2 1
argMap "betaConv" = IO 1 1
argMap "cons" = IO 2 1
argMap "const" = IO 1 1
argMap "constTerm" = IO 2 1
argMap "deductAntisym" = IO 2 1
argMap "defineConst" = IO 2 2
argMap "defineTypeOp" = IO 5 5
argMap "eqMp" = IO 2 1
argMap "nil" = IO 0 1
argMap "opType" = IO 2 1
argMap "refl" = IO 1 1
argMap "subst" = IO 2 1
argMap "thm" = IO 3 0
argMap "typeOp" = IO 1 1
argMap "var" = IO 2 1
argMap "varTerm" = IO 1 1
argMap "varType" = IO 1 1
argMap x | (isName x) = IO 0 1
process :: String -> CommandIO -> PGraph -> PStack -> (PGraph, PStack)
process str io graph stack =
let argList = map (\x -> fromJust (stack `at` x)) [0..((args io) - 1)]
nextNum = head (Graph.newNodes 1 graph)
node = (nextNum, str)
edgeList = map (\x -> (nextNum, (fst . snd . snd $ x), (fst x, fst . snd $ x))) (zip [1..(args io)] argList)
graph' = (Graph.insEdges edgeList) . (Graph.insNode node) $ graph
nodeList = map (\x -> (x, node)) [1..(results io)]
stack' = foldr (<:>) (Stack.pop (args io) stack) nodeList
in (graph', stack')
parse :: (PGraph,PStack,PMap) -> String -> (PGraph,PStack,PMap)
parse gs@(graph,stack,dictionary) str =
case str of
"def" -> let num = fst . fromJust $ stack `at` 0
node = fromJust $ stack `at` 1
dictionary' = Map.insert num node dictionary
stack' = Stack.pop 1 stack
in (graph, stack', dictionary')
"ref" -> let num = fst . fromJust $ stack `at` 0
node = fromJust (Map.lookup num dictionary)
stack' = node <:> (Stack.pop 1 stack)
in (graph, stack', dictionary)
"remove" -> let num = fst . fromJust $ stack `at` 0
node = fromJust (Map.lookup num dictionary)
stack' = node <:> (Stack.pop 1 stack)
dictionary' = Map.delete num dictionary
in (graph, stack', dictionary')
"pop" -> (graph, (Stack.pop 1 stack), dictionary)
'#':rest -> gs
n | (isNumber n) -> let node = (read n, (0,""))
stack' = node <:> stack
in (graph, stack', dictionary)
x -> let (graph', stack') = process x (argMap x) graph stack
in (graph', stack', dictionary)
checkDupe :: PGraph -> PGraph
checkDupe graph =
let f = (\g n ->
let list = filter (\x -> (x /= n) && (nodeEquals g n x)) (Graph.nodes g)
in if (list == []) then g else merge g n (head list))
merge =
(\g n r ->
let edgesFixed = map (\(a,b,c) -> (a,r,c)) (Graph.inn g n)
in (Graph.insEdges edgesFixed) . (Graph.delNode n) $ g)
in foldl' f graph (Graph.nodes graph)
nodeEquals :: Gr String (Int,Int) -> Node -> Node -> Bool
nodeEquals graph one two =
let edgesOne = sortBy sortFunc (Graph.out graph one)
edgesTwo = sortBy sortFunc (Graph.out graph two)
sortFunc = (\(_,_,x) (_,_,y) -> compare x y)
paired = zip (map (\(_,x,_) -> x) edgesOne) (map (\(_,x,_) -> x) edgesTwo)
in (Graph.gelem one graph) &&
(Graph.gelem two graph) &&
(Graph.lab graph one == Graph.lab graph two) &&
(length edgesOne == length edgesTwo) &&
(all (\x -> nodeEquals graph (fst x) (snd x)) paired)
resolveNodeClash :: Gr String (Int,Int) -> Gr String (Int,Int) -> (Gr String (Int,Int), Map Int Int)
resolveNodeClash ref graph =
let dict = Map.fromList (zip (Graph.nodes graph) (Graph.newNodes (Graph.noNodes graph) ref))
nodeList = map (\(x,y) -> (fromJust (Map.lookup x dict), y)) (Graph.labNodes graph)
edgeList = map (\(x,y,z) -> (fromJust (Map.lookup x dict),
fromJust (Map.lookup y dict), z)) (Graph.labEdges graph)
in (Graph.mkGraph nodeList edgeList, dict)
doGraphGen :: [String] -> PGraph
doGraphGen list =
let graph = Graph.empty
stack = Stack.empty
dictionary = Map.empty
result = foldl' parse (graph,stack,dictionary) list
in case result of (g,s,d) -> checkDupe g
|