summaryrefslogtreecommitdiff
path: root/ProofGraph.hs
blob: f3caa6f10d5597dc5872f94153a0f35e6b4101e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import System( getArgs )
import Text.Printf
import Data.Maybe
import Data.List
import Data.Set( Set )
import qualified Data.Set as Set
import Data.Map( Map, (!) )
import qualified Data.Map as Map
import Data.Graph.Inductive.Graph( LNode, LEdge, (&) )
import qualified Data.Graph.Inductive.Graph as Graph
import Data.Graph.Inductive.Tree
import Stack( Stack, at, (<:>) )
import qualified Stack as Stack
import Parse



type PGraph = Gr String (Int,Int)
type PStack = Stack (Int, LNode String)
type PMap = Map Int (Int, LNode String)


data CommandIO = IO { args :: Int
                    , results :: Int }


argMap :: String -> CommandIO
argMap "absTerm" = IO 2 1
argMap "absThm" = IO 2 1
argMap "appTerm" = IO 2 1
argMap "appThm" = IO 2 1
argMap "assume" = IO 1 1
argMap "axiom" = IO 2 1
argMap "betaConv" = IO 1 1
argMap "cons" = IO 2 1
argMap "const" = IO 1 1
argMap "constTerm" = IO 2 1
argMap "deductAntisym" = IO 2 1
argMap "defineConst" = IO 2 2
argMap "defineTypeOp" = IO 5 5
argMap "eqMp" = IO 2 1
argMap "nil" = IO 0 1
argMap "opType" = IO 2 1
argMap "refl" = IO 1 1
argMap "subst" = IO 2 1
argMap "thm" = IO 3 0
argMap "typeOp" = IO 1 1
argMap "var" = IO 2 1
argMap "varTerm" = IO 1 1
argMap "varType" = IO 1 1
argMap x | (isName x) = IO 0 1



process :: String -> CommandIO -> PGraph -> PStack -> (PGraph, PStack)
process str io graph stack =
    let argList = map (\x -> fromJust (stack `at` x)) [0..((args io) - 1)]
        nextNum = head (Graph.newNodes 1 graph)
        node = (nextNum, str)
        edgeList = map (\x -> (nextNum, (fst . snd . snd $ x), (fst x, fst . snd $ x))) (zip [1..(args io)] argList)
        r = insertNode node edgeList graph
        nodeList = map (\x -> (x, fst r)) [1..(results io)]
        stack' = foldr (<:>) (Stack.pop (args io) stack) nodeList
    in (snd r, stack')


insertNode :: LNode String -> [LEdge (Int,Int)] -> PGraph -> (LNode String, PGraph)
insertNode node edgeList graph =
    let checkList = filter (\x -> (snd x) == (snd node)) (Graph.labNodes graph)
        edgeCheck = filter (\x -> (snd x) == edgeList) (zip [0..] (map ((Graph.out graph) . fst) checkList))
        actualNode = if (edgeCheck == [])
                     then node
                     else checkList !! (fst . head $ edgeCheck)
        actualEdges = map (\x -> case x of
                                     (a,b,c) -> (fst actualNode,b,c)) edgeList
        graph' = if (node == actualNode)
                 then Graph.insEdges actualEdges (Graph.insNode actualNode graph)
                 else graph
    in (actualNode,graph')


parse :: (PGraph,PStack,PMap) -> String -> (PGraph,PStack,PMap)
parse gs@(graph,stack,dictionary) str =
    case str of
        "def" -> let num = fst . fromJust $ stack `at` 0
                     node = fromJust $ stack `at` 1
                     dictionary' = Map.insert num node dictionary
                     stack' = Stack.pop 1 stack
                 in (graph, stack', dictionary')

        "ref" -> let num = fst . fromJust $ stack `at` 0
                     node = fromJust (Map.lookup num dictionary)
                     stack' = node <:> (Stack.pop 1 stack)
                 in (graph, stack', dictionary)

        "remove" -> let num = fst . fromJust $ stack `at` 0
                        node = fromJust (Map.lookup num dictionary)
                        stack' = node <:> (Stack.pop 1 stack)
                        dictionary' = Map.delete num dictionary
                    in (graph, stack', dictionary')

        "pop" -> (graph, (Stack.pop 1 stack), dictionary)

        '#':rest -> gs

        n | (isNumber n) -> let node = (read n, (0,""))
                                stack' = node <:> stack
                            in (graph, stack', dictionary)

        x -> let (graph', stack') = process x (argMap x) graph stack
             in (graph', stack', dictionary)
        


doGraphGen :: [String] -> PGraph
doGraphGen list =
    let graph = Graph.empty
        stack = Stack.empty
        dictionary = Map.empty
        result = foldl' parse (graph,stack,dictionary) list
    in case result of (g,s,d) -> g



main = do
    args <- getArgs
    list <- getLines $ head args
    let result = doGraphGen (map (stripReturn) list)
    printf $ (show result) ++ "\n"