1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
module WriteProof (
write,
writeAll,
doWriteProof,
singleCommands,
) where
import Data.Maybe
import Data.Graph.Inductive.Graph( LNode, LEdge, Node, Edge, (&) )
import qualified Data.Graph.Inductive.Graph as Graph
import Data.Graph.Inductive.Tree
import Data.Map( Map, (!) )
import qualified Data.Map as Map
import Data.List
import Stack( Stack, at, (<:>) )
import qualified Stack as Stack
import Parse( isNumber )
output :: Gr String (Int,Int) -> Node -> Int
output graph node =
let label = fromJust (Graph.lab graph node)
in case label of
"thm" -> 0
"pop" -> 0
"defineConst" -> 2
"defineTypeOp" -> 5
x -> 1
reuse :: Gr String (Int,Int) -> Node -> Int
reuse graph node =
let labels = map snd (Graph.lpre graph node)
f = (\x y -> length (filter (\z -> fst y == fst z) x))
reuseList = map (f labels) labels
in maximum reuseList
cost :: Gr String (Int,Int) -> Node -> Int
cost graph node =
length (subGraph graph node)
next :: Int -> Gr String (Int,Int) -> [String]
next num graph =
let nodeList = filter (isNumber . snd) (Graph.labNodes graph)
numList = nub . (map (read . snd)) $ nodeList
f = (\x y -> if (x `elem` y) then f (x + 1) y else x)
g = (\x y -> if (x == 0) then y else g (x - 1) (f 0 (y ++ numList) : y))
in map show (g num [])
subGraph :: Gr a b -> Node -> [Node]
subGraph graph node =
let sucList = nub (Graph.suc graph node)
in nub (node : (foldl' (++) [] (map (subGraph graph) sucList)))
fst3 :: (a,b,c) -> a
fst3 (a,_,_) = a
snd3 :: (a,b,c) -> b
snd3 (_,b,_) = b
thd3 :: (a,b,c) -> c
thd3 (_,_,c) = c
orderNodes :: Gr String (Int,Int) -> [Node] -> [Node]
orderNodes graph nodeList = nodeList
--placeholder
removeOverlap :: Gr String (Int,Int) -> Node -> [Node] -> [Node]
removeOverlap graph node list =
let nubFunc = (\x y -> (getArg graph node x) == (getArg graph node y))
in nubBy nubFunc list
--rightmostEdge :: Gr String (Int,Int) -> LEdge (Int,Int) -> Bool
--rightmostEdge graph edge =
--crossEdge :: Gr String (Int,Int) -> LEdge (Int,Int) -> Bool
--multiCommands :: Gr String (Int,Int) -> [Node] -> Gr String (Int,Int)
--multiCommands graph nodeList =
-- let trace = (\g n cn ca ->)
--
-- r = (\g n p -> let g' = if ((output g n) <= 1)
-- then g
-- else let (argToUseDict, (place, placeArg)) = trace g n n 1
-- edgesToRemove =
-- edgesRemoved = foldl' (\x y -> Graph.delLEdge y x) g edgesToRemove
-- defSubGraph =
-- edgesToRef =
-- new =
-- refsToAdd =
-- done = foldl' insertSubGraph edgesRemoved refsToAdd
-- in done
-- in f g' n)
--
-- f = (\g n -> let argList = (removeOverlap g) . reverse $ [1 .. (Graph.outdeg g n)]
-- in foldl' (\x y -> r x (getArg x n y) n) g argList)
--
-- in foldl' f graph nodeList
multiCommandsSimple :: Gr String (Int,Int) -> [Node] -> Gr String (Int,Int)
multiCommandsSimple graph nodeList =
let r = (\g n p -> let g' = if ((output g n) <= 1)
then g
else let ou = output g n
index = next ou g
new = Graph.newNodes (5 * ou + 2) g -- 3 for num/def/pop, 2 for num/ref, per output plus an extra num/ref
(defNew,refNew) = splitAt (3 * ou + 2) new
edgeCheck x y = compare (snd . thd3 $ x) (snd . thd3 $ y)
oldEdge = maximumBy edgeCheck (filter (\x -> fst3 x == p) (Graph.inn g n))
toConvert = delete oldEdge (Graph.inn g n)
defNodeGen = (\i j x lim -> if (x >= lim)
then []
else [(j!!(x*3), i!!x), (j!!(x*3+1), "def"),
(j!!(x*3+2), "pop")] ++ (defNodeGen i j (x+1) lim))
defNodes = (defNodeGen index defNew 0 ou) ++ [(defNew!!(3*ou), index!!((snd . thd3 $ oldEdge)-1)), (defNew!!(3*ou+1), "ref")]
defEdgeGen = (\x b -> let x' = [(fst b, fst . snd $ x, (1,1))] ++ (fst x)
in (x',b))
defEdges = [(p, (fst . last $ defNodes), thd3 oldEdge), ((fst . head $ defNodes), n, (1,1))] ++
(fst (foldl' defEdgeGen ([], head defNodes) (tail defNodes)))
defAdded = (Graph.insEdges defEdges) . (Graph.insNodes defNodes) . (Graph.delLEdge oldEdge) $ g
refGen = (\i lab -> [(i!!(2*(lab-1)), index!!(lab-1)), (i!!(2*(lab-1)+1), "ref")])
refNodes = map (refGen refNew) [1 .. (ou)]
refEdges = map (\[x,y] -> (fst y, fst x,(1,1))) refNodes
refAdded = (Graph.insEdges refEdges) . (Graph.insNodes (concat refNodes)) $ defAdded
convertEdge = (\g e -> let new = (fst3 e, fst . last $ (refNodes!!(snd . thd3 $ e)), thd3 e)
in (Graph.insEdge new) . (Graph.delLEdge e) $ g)
done = foldl' convertEdge refAdded toConvert
in done
in f g' n)
f = (\g n -> let argList = reverse $ [1 .. (Graph.outdeg g n)]
in foldl' (\x y -> r x (getArg x n y) n) g argList)
in foldl' f graph nodeList
singleCommands :: Gr String (Int,Int) -> [Node] -> Gr String (Int,Int)
singleCommands graph nodeList =
let r = (\g n p -> let g' = if (((output g n) /= 1) || ((Graph.indeg g n) == 1) || ((cost g n) < 3) || ((cost g n) == 3 && (Graph.indeg g n) < 3))
then g
else let index = head (next 1 g)
new = Graph.newNodes 4 g -- 2 new nodes for def and 2 new nodes for ref
oldEdge = head $ (filter (\x -> fst3 x == p) (Graph.inn g n))
defNodes = [(new!!0, "def"), (new!!1, index)]
defEdges = [(p, fst (defNodes!!0), (fst . thd3 $ oldEdge, 1)),
(fst (defNodes!!0), fst (defNodes!!1), (1,1)),
(fst (defNodes!!1), n, (1,1))]
defAdded = (Graph.insEdges defEdges) . (Graph.insNodes defNodes) . (Graph.delLEdge oldEdge) $ g
refNodes = [(new!!2, "ref"), (new!!3, index)]
refEdge = (fst (refNodes!!0), fst (refNodes!!1), (1,1))
refAdded = (Graph.insEdge refEdge) . (Graph.insNodes refNodes) $ defAdded
convertEdge = (\g e -> let new = (fst3 e, fst (refNodes!!0), thd3 e)
in (Graph.insEdge new) . (Graph.delLEdge e) $ g)
done = foldl' convertEdge refAdded (filter (\x -> fst3 x /= fst (defNodes!!1)) (Graph.inn refAdded n))
in done
in f g' n)
f = (\g n -> let argList = reverse $ [1 .. (Graph.outdeg g n)]
in foldl' (\x y -> r x (getArg x n y) n) g argList)
in foldl' f graph nodeList
removeUnused :: Gr String (Int,Int) -> [Node] -> Gr String (Int,Int)
removeUnused graph nodeList =
let unused = filter (\x -> Graph.indeg graph x == 0 && x `notElem` nodeList) (Graph.nodes graph)
in if (unused == [])
then graph
else removeUnused (Graph.delNodes unused graph) nodeList
resolve :: Gr String (Int,Int) -> [Node] -> Gr String (Int,Int)
resolve graph nodeList =
foldl' (\g f -> f g nodeList) graph [removeUnused, singleCommands, multiCommandsSimple]
getArg :: Gr String (Int,Int) -> Node -> Int -> Node
getArg graph node arg =
snd3 . head $ (filter (\x -> (fst . thd3 $ x) == arg) (Graph.out graph node))
writeGraph :: Gr String (Int,Int) -> Node -> [String]
writeGraph graph node =
let label = fromJust (Graph.lab graph node)
argList = [1 .. (Graph.outdeg graph node)]
in foldl' (\s a -> (writeGraph graph (getArg graph node a)) ++ s) [label] argList
write :: Gr String (Int,Int) -> Node -> [String]
write graph node =
writeGraph (resolve graph [node]) node
writeAll :: Gr String (Int,Int) -> [Node] -> [String]
writeAll graph nodeList =
let ordered = orderNodes graph nodeList
graph' = resolve graph ordered
f = (\g n -> if (n == [])
then []
else (writeGraph g (head n)) ++ (f g (tail n)))
in f graph' ordered
-- metric relates to minimum amount of work done not-on-top of the stack
doWriteProof :: Gr String (Int,Int) -> [String]
doWriteProof graph =
let initList = filter (\x -> Graph.indeg graph x == 0) (Graph.nodes graph)
in writeAll graph initList
|